FINAL REPORT

ANALYSIS OF GEOMETRY AND DESIGN POINT PERFORMANCE OF AXIAL FLOW TURBINES

PART III - DESIGN ANALYSIS OF SELECTED EXAMPLES N68 19929

by

A. F. Carter and F. K. Lenherr

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

February 29, 1968

CONTRACT NAS3-9418

Technical Management NASA Lewis Research Center Cleveland, Ohio Air-Breathing Engine Division Edward L. Warren Technical Advisor Fluid System Components Division Arthur J. Glassman

NORTHERN RESEARCH AND ENGINEERING CORPORATION 219 Vassar Street Cambridge, Massachusetts 02139

TABLE OF CONTENTS

SUMMARY .		Ì
INTRODUCT	ION	2
	Report Arrangement	4
THE EFFECT	T OF CHANGES IN ANALYSIS VARIABLES	5
	Introduction	5
	Stator Exit Flow Parameters	6
	Stage Power Output Function	9
	The Total-Pressure-Loss Coefficient Correlation	2
	Interfilament Mixing	4
	Annulus Geometry	6
PERFORMAN	CE PREDICTIONS FOR A SINGLE STAGE AT FOUR TIP DIAMETERS	9
	Introduction	19
	The Total-Pressure-Loss Assumptions	20
	Design Optimizations	2 1
	Variation of Efficiency With Stage Loading	26
	Concluding Remarks	28
CONCLUSIO	NS	3
REFERENCE	S	3.
FIGURES .		3
NOMENCLAT	TURE	5.
APPENDIX	I - COMPUTER OUTPUT FOR TURBINE DESIGNS A, B, C, AND D	5

LIST OF FIGURES

Figure	1:	Tangential and Meridional Velocity Distributions at Stator Exit for Three Stator Exit Angle Distributions (Highly Loaded Stage - Turbine D)	•		35
Figure	2:	Stator Velocity Ratio and Blade Row Efficiency Variation for Three Stator Exit Angle Distributions (Turbine D)	•		36
Figure	3:	Tangential and Meridional Velocity Distributions at Stator Exit for Three Specifications (Conservative Stage - Turbine A)		•	37
Figure	4:	The Effect of the Power Output Distribution on the Meridional Velocity at Stage Exit, Streamline Total Temperature Drop, and Rotor Reaction (Turbine D)	•		38
Figure	5:	Rotor Relative Flow Angles for Three Power Output Distributions (Turbine D)			39
Figure	6:	The Effect of Power Output Distribution on the Stage Exit Meridional Velocity and Rotor Reaction Distributions (Fuel-Pump Turbine)	•	•	40
Figure	7:	The Effect of the Assumed Stator Loss on the Flow Parameters at Exit from a Supersonic Stator (Fuel-Pump Turbine)	•		41
Figur e	8:	A Comparison of the Flow Angles at the Third Stator of a Multistage Machine With and Without Interfilament Mixing	•		42
Figure	9:	A Comparison of the Pressures at the Third Stator of a Multistage Machine With and Without Interfilament Mixing		•	43
Figure	10:	The Effect of the Meridional Components of Stream- line Slope and Curvature on the Meridional Velocity Distribution at a Stage Exit	•	•	44
Figure	11:	The Variations of Local Total-to-Total Efficiency and Row Velocity Ratios for Alternative Stator Specification (Turbine D)			45
Figure	12:	Variations of Total-to-Total and Total-to-Static Efficiencies With Mean Streamline Stage Reaction (Turbine D)			46

Figur e	13:	Rotor Exit Mach Number, Velocity Ratio, and Total-Pressure-Loss Coefficient Variation for Two Levels of Mean Line Stage Reaction (Turbine D)	47
Figur e	14:	Total-to-Total and Total-to-Static Efficiency Variations With Stage Tip Radius (Turbines A, B, C, and D)	48
Figur e	15:	Summary of Annulus Geometries, Specifications, and Performance Data for the Four Turbines	49
Figure	16:	Comparison of the Hub Section Velocity Diagrams	50
Figure	17:	Comparison of the Mean Section Velocity Diagrams	51
Figure	18:	Comparison of the Casing Section Velocity Diagrams	52

SUMMARY

This report is the final one in a series of three. Based on a stream-filament analysis procedure and a correlation of total-pressure-loss coefficients developed in the Part I report (NREC Report No. 1125-1), a computer program for the analysis of the geometry and design-point performance of axial flow turbines was prepared. The computer program is presented in the Part II report (NREC Report No. 1125-2). This Part III report is concerned with the application of the computer program to the analysis of turbine design requirements.

The report presents the results of a general investigation of the effects of changes in the radial variation of design specifications such as the stator exit tangential velocity and the work output. These results are intended to provide guidance to future users of the program who are presented with considerably more freedom in turbine design using a stream-filament approach to the design problem. The report also presents the results of a specific investigation of the geometry and design-point performance of four turbines which satisfy a selected design requirement. The four turbines cover a range of tip diameters from a value consistent with a conservative design to a value which is 75 per cent of that selected for the conservative stage. The performance predictions show a 5.6 per cent drop in total-to-total efficiency and a 9.2 per cent drop in total-to-static efficiency for the increase in stage loading which accompanies the diameter reduction.

INTRODUCTION

This is the third part of a three-part report concerning the development of a computer program for the design-point analysis of axial flow turbines. The Part I report, Reference I, presents the development of the analysis method and a loss coefficient correlation. The Part II report, Reference 2, describes the computer program. This final report of the series considers the application of the program to particular turbine design examples.

The computer program is based on a stream-filament approach to turbine design which includes consideration of the meridional components of streamline slope and curvature. Solutions of the flow field are obtained where the flow can be considered axisymmetric; that is, at the turbine inlet, all interblade row design stations, and the final stage exit. For an analysis of the design-point geometry and performance of a turbine, the design requirements are conventionally expressed by the inlet weight flow, the inlet total temperature and total pressure, the power output of the individual spools in a multispool unit, and the rotative speed of the spools. In addition to the standard design analysis variables of annulus geometry, number of stages, and power output split between stages, the program enables the turbine designer to consider as analysis variables the radial variations of the inlet conditions, streamline curvature and slope, element loss coefficient or efficiency, stator exit whirl velocity or absolute flow angle, and power output. The program also incorporates a total-pressure-loss coefficient correlation so that it is possible to make comparison of alternative designs using parameters which are fully consistent with the assumed correlation of total-pressure loss for the

individual elements of the blading.

The contents of the report are in two major categories: one, a general investigation of the effects on predicted geometry and performance of the parameters which may be selected by the designer; and two, the analysis of a series of four turbines to satisfy the same design-point requirements but differing in outside diameter. The computer program permits the specification of radial variations of such design variables as the stator exit flow angle or whirl velocity and the power output of individual stream filaments. However, the requirements that the solution of the flow field must satisfy radial equilibrium and that the geometry of the blading should be mechanically acceptable place boundaries on the analysis variables. Thus, the principal objective of the work in the first category was to qualitatively investigate the effects of the analysis variables and hence to provide guidance to future users of the program. For the investigation, three sets of turbine design requirements are used; these correspond to a single-stage turbine having a design-point pressure ratio of approximately 2:1, a multistage turbine having a two-stage high pressure (hp) and a five-stage low pressure (lp) spool, and a small singlestage turbine of high pressure ratio. The first two requirements were supplied by NASA as selected applications for the program; the third design requirement is typical of a fuel-pump application with supersonic flow at stator and a near-impulse rotor and is, in fact, similar to the first stage of the turbine of Reference 3. The stage total-to-static pressure ratio of this stage is in excess of 4:1.

For the analysis of a particular design requirement, the single stage supplied by NASA is investigated at four values of outside diameter. Starting with a conservative design for which the outside diameter is 36

inches (91.4 cms), the outside diameter is decreased in three steps to a value of 27 inches (68.6 cms). The hub diameter of the stage is varied to maintain a constant annulus area, and hence, the series of turbines cover a wide range of rotor hub section loading when the stage work is related to the blade speed at the hub. The results of the analysis provide a means of assessing the trade-off between a reduction in turbine size and the reduction in efficiency which accompanies the resultant increase in stage loading.

Report Arrangement

The report is divided into three main sections. The first section presents the results of the general investigation of the effects of specified analysis variables. The principal variables considered are the radial distribution of whirl velocities or absolute flow angles at stator exits, the radial distribution of the power output, and interfilament mixing. The second section presents the results of the design analysis of the four versions of the NASA-selected single-stage application. This section details the predicted performance of the stages, their geometries, and their computed velocity diagrams. An appendix giving the complete computer printouts of the selected designs forms the third section of the report.

THE EFFECT OF CHANGES IN ANALYSIS VARIABLES

Introduction

Once the conventional turbine design restrictions of a free-vortex distribution of tangential velocities and a radially constant work extraction have been removed, a turbine designer is given considerably more design freedom. For example, the computer program permits arbitrary specification of the radial variations of stator exit tangential velocity (or absolute flow angle) and the work output.

However, it does not necessarily follow that aerodynamically and mechanically acceptable designs will be produced by the program unless the input specifications are selected with reasonable care. For example, a solution of the flow field with positive values of the throughflow velocity at all radial stations will only be possible for a relatively narrow range of tangential velocity distributions when the absolute flow angle is high as is the case at most stator exit design stations. Similarly, the amount of radial variation in the work output which will be possible in a stage is limited; large variations in the streamline total temperature drop will not be possible in some designs because it will not be possible to obtain a physically acceptable solution of the meridional velocity distribution. The first part of this section is devoted to these two aspects of turbine design. The principal intent is to provide some quidance to future users of the program by illustrating the effect of changes in the specifications of stator exit conditions and the power output function for sample design requirements.

Also considered in this section are the effects of three other analysis variables: the specification of the loss correlation used in

the analysis, the departure from the stream-filament flow as simulated by interfilament mixing, and the curvature of the annulus walls.

Stator Exit Flow Parameters

The computer program provides the option to specify either stator exit tangential velocities or absolute flow angles as a function of radius. Use of the program to date has shown that the range of distribution of tangential velocities for which a solution of the flow field is possible is relatively small. This point is illustrated by data obtained from investigations of two versions of the single-stage turbine, the highly loaded stage with an outside diameter of 27 inches (68.6 cms) and a hub/tip ratio of 0.608, and the conservative design with an outside diameter of 36 inches (91.4 cms) and a hub/tip diameter ratio of 0.803. (The specified design requirements of these turbines are presented in the following chapter.)

for the highly loaded stage, three absolute stator exit angle distributions were specified, and these are shown in Figure 1 as a function of radius. The angle distribution which varies by approximately 10 degrees across the annulus closely approximates a "free-vortex" variation for which the tangent of the angle varies inversely with radius; the second distribution reduces the radial variation to approximately 5 degrees, and the third is radially constant. The computed tangential and meridional velocity distributions are also shown in this figure. The velocities have been normalized in each case by dividing by the appropriate value of velocity at the mean streamline. It can be seen that the meridional velocity distribution for the first specification is approximately constant with radius. The constant angle design, however, produces a significant

variation of meridional velocity with the hub velocity approximately 50 per cent greater than that at the tip. The change in tangential velocity distributions, however, is not large. The ratios of the tangential velocity at the casing radius to that at the hub are 0.631 and 0.668 for the constant angle and free-vortex angle design, respectively. These numbers can be compared with a value of 0.608 which would be obtained from a conventional free-vortex design in which a radially constant axial velocity would have been assumed. Figure 1 also shows the shift of the mean streamline position towards the hub which accompanies the change from a free-vortex angle distribution to a constant flow angle design; the radii at which the normalized tangential velocities are unity correspond to the mean streamline.

Although all three angle distributions were selected to have the same angle at the arithmetic mean radius, the three designs will have differing effective flow areas at stator exit. Hence, the stage reaction changes and, accompanying the change, the streamline values of the blade row velocity ratios also change. In Figure 2 the radial variations of the stator velocity ratio, V_{\bullet}/V_{i} , are shown for the three angle distributions. Although the mean level of velocity ratio has changed, the slopes of the curves are approximately equal. It would seem likely that if the angle distributions had been selected to yield constant values of effective flow areas for the three distributions that the radial variations of blade element velocity ratios would have been almost identical. Also shown on Figure 2 are the radial variations of stator blade row efficiency (defined as 1-e where e is the kinetic-energy-loss coefficient). It will be seen that, for the total-pressure-loss correlation used, the effect of the angle changes has been to increase the efficiency

of the hub section and decrease it at the tip by changing from a freevortex to a constant flow angle distribution.

The stage efficiencies predicted for the three stators in stage designs which used identical specifications for the distribution of power output function showed a decrease in total-to-total efficiency from 89.08 to 88.25 per cent for the change from a free-vortex to a constant flow angle stator. The total-to-static efficiency predictions, however, yielded an opposite effect with an increase from 68.65 to 69.68 per cent. Later in the report, where the predicted performances of various stages are discussed in greater detail, it is shown that these changes are the result of changes in the stage reaction rather than the result of a redistribution of the stator exit absolute flow angles. When angle distributions are selected to maintain a constant value of effective flow area, the change in stage efficiency is negligibly small.

A similar investigation was carried out using the large diameter turbine for the same design requirements. The angle and velocity distributions for the higher hub/tip ratio turbine are shown in Figure 3.

The characteristics exhibited are similar to those of Figure 1. The changes again occur in the meridional velocity distribution rather than in the tangential velocity distribution.

From Figures 1 and 3 it can be concluded that the stator exit meridional velocity distributions are very sensitive to changes in tangential velocity distributions and that there exists only a narrow band of the latter over which it will be possible to obtain a satisfactory design solution. Therefore, it is recommended that the option to specify flow angles, rather than tangential velocities, at the stator exit design station should be used. Experience with the program has shown that tangential

velocity distributions which depart significantly from a free-vortex distribution will not yield a solution. Large radial gradients of meridional velocity are required to sustain radial equilibrium with some tangential velocity distributions and unless the mean level of through-flow velocity is sufficiently high, the meridional velocity will approach a zero value at some point within the annulus.

The sensitivity of the solution increases as the mean flow angle increases. Large gradients of static pressure are required to maintain radial equilibrium at stator exits, but the static pressures are principally dependent on the tangential velocities. Hence, relatively large changes in meridional velocity may be required to achieve the required static pressure distribution when the tangential velocity distribution is arbitrarily specified.

Stage Power Output Function

The computer program permits the specification of a radial distribution of a power output function as an analysis variable. The power output function is, by definition, the fraction of the total stage power output produced by the flow passing between any selected streamline and the hub. Thus, a designer is able to redistribute the power output between the filaments of the flow. However, experience with the program has shown that acceptable design solutions can only be obtained for a relatively narrow band of power output functions. The power output function is specified versus streamline number so that the power output of individual equal-flow stream filaments can be controlled independently of the streamline locations. For the investigation of the effects of changing the power output distribution, parabolic distributions of the power output

were used. These distributions produce a linear variation of streamline total temperature drop for the streamlines used in the analysis; since streamlines are located to define equal flows, the total temperature drop is not necessarily a linear function of radius. The departure of the power output function from a constant work output design is indicated by the index used to generate the parabolic power output function. An index of 1.0 corresponds to a radially constant total temperature, and the factors 0.85, 0.87, and 0.89 produce hub streamline temperature drops which are 91.9, 93.2, and 94.3 per cent of the mean value, respectively, with corresponding increases in the tip streamline total temperature drop.

In Figures 4 and 5 the results obtained for three distributions of power output are shown. The turbine is the small-diameter single stage and a constant angle stator is used for all three designs. The actual variations of streamline total temperature drop are shown in Figure 4 for the selected power output distribution, together with the normalized meridional velocity distribution at the stage exit and the variation of local values of rotor blade relative velocity ratio, $\sqrt{1/\sqrt{2}}$. It will be seen that as the local value of total temperature drop increases, the computed meridional velocity decreases. For this particular turbine design a solution could not be obtained with a uniform distribution of power output. The value of meridional velocity decreased rapidly to zero at a point near the hub section. The design specifications near the hub in that particular case implied a loading which exceeded a limiting loading value. By progressively decreasing the power output requirement of the inner part of the annulus flow, the meridional velocity at the hub is increased. However, since the tip section loading is increased, the meridional velocity at the tip decreases. It will be seen that the changes

in power output distribution have produced relatively little change in the local velocity ratios for the rotor.

While it is convenient to generate power output functions if a parabolic variation is assumed, it does not necessarily follow that such distributions would be selected for final designs. From Figure 4 it can be inferred that the power output should be redistributed so that the reduced power output of the hub section should be compensated by an increase in the central section of the design. It would appear that increasing the tip section total temperature drop by an amount equal to the reduction at the hub could in many designs merely transfer the limiting loading problem from hub to the tip. The selection of a final design will, of course, be made after consideration of both the predicted performance of the stage and the geometry of the blading. In Figure 5 the computed inlet and exit rotor relative flow angles are shown for the three power output distribu-Reducing the power output of the hub section has reduced the hub section deflection by approximately 5 degrees and increased the tip deflection by 3.7 degrees. With the loss correlation used in the analysis, the changes in reaction and deflection produced by the change in power output function result in very little change in the mass averaged value of stage efficiency.

The turbine discussed above is a relatively low hub/tip ratio stage. However, limiting loading problems can be expected in any highly loaded stage. This point is illustrated by Sample Case IV given in Reference 2. This sample design, which includes the full computer program output for three power output distributions, is for a design requirement similar to the fuel-pump turbine of Reference 3. As was illustrated in the sample output, a solution could not be obtained with a uniform

distribution of power output even though the stage hub/tip ratio was 0.88. The normalized meridional velocity distributions for the two sets of analysis variables which produced solutions are shown in Figure 6. This figure also shows the radial variation of total temperature drop implicit in the power output function distributions. Changing the power function to reduce the hub total temperature drop by approximately 1 per cent has produced a significant change in the predicted meridional velocity distribution; the higher value can be concluded to be extremely close to a limiting loading. The data of Figures 4 and 6 both show that only limited variations of work output with radius will produce mechanically acceptable blade geometries. Hence, it is important that future users of the program appreciate the fact that it is possible to exceed a limiting loading condition at any point in the annulus. At the limiting loading condition it becomes impossible to obtain a value of static pressure which will satisfy radial equilibrium. To assist in the selection of a suitable power output distribution, the computer program provides output at the lowest value of mass flow for which a solution could be obtained, thus providing a basis from which to modify the specification of the analysis variables including the power output function.

The Total-Pressure-Loss Coefficient Correlation

The program provides various optional specifications of the performance of the elements of the blading. The correlation developed in Reference 1 has been made an integral part of the program. However, the coefficients of the correlation have been made part of the input specification. Hence, these coefficients together with the additional loss factor can be regarded as analysis variables. It is believed that the

coefficients recommended in Reference 1 produce realistic total-pressureloss coefficients for the type of turbine on which the correlation was based. Nevertheless, it is almost inevitable that the correlation will be revised at a later date and that the additional loss factor will have to be used in some case to produce realistic analyses for particular turbines.

To illustrate this point, a large additional loss factor was used in the analysis of the fuel-pump turbine (Sample Case IV of Ref 2). The turbine is a high pressure ratio single stage in which the stator exit Mach number is supersonic and the rotor is of near-impulse design. With the stator exit flow angle specified, analyses of the stator exit flow field were carried out using the internal correlation of loss with and without an additional loss factor. (The program output for the latter case is given in Ref 2). The total-pressure-loss coefficients for the two analyses were virtually independent of radius and can be considered constant at 0.125 and 0.368. The computed absolute and relative Mach numbers at the stator exit plane are shown in Figure 7, together with the rotor inlet relative flow angles. For this particular design the change in the computed rotor inlet flow angle is not large, principally because of the type of velocity triangle. However, the most notable change in the design analysis is in the stage reaction; for the same power output the analysis with the low stator loss coefficient produces high stator exit Mach numbers and low rotor relative exit Mach numbers. Since the test data of Reference 3 show static pressures consistent with the higher loss coefficient, it must be concluded that an additional loss factor should be used for the analysis of interblade row conditions. However, this does not necessarily mean that the total-pressure-loss coefficient correlation used for the stator row is, in general, completely invalid for supersonic stator designs. It is quite possible that the additional loss occurs as a result of the shock system ahead of the rotor. When the program is used for turbine designs in which the predicted rotor relative Mach number is supersonic over the entire span of the rotor, it is recommended that the assumptions concerning the losses should be reviewed. The internal correlation of total-pressure-loss coefficient and the recommended coefficients of that correlation are unlikely to be valid when the mean level of rotor inlet relative Mach number is supersonic.

The dependence of the total-pressure-loss coefficient on the row reaction and the deflection incorporated in the loss correlation is such that the limiting loading condition is likely to occur first at a rotor hub section. As illustrated by Figure 6, a small change in the loading of hub section can produce significant changes in the meridional velocity gradient when the section is close to its limiting loading. The actual value of limiting loading will depend on the loss correlation being used in the analysis; the higher the total pressure loss in any given section of the blading, the more difficult it becomes to achieve a value of static pressure which will satisfy radial equilibrium.

Interfilament Mixing

The computer program is based on a stream-filament analysis of the flow through a turbine. Hence, if an analysis of a multistage unit is performed with a radially uniform distribution of power output for each stage, a total-pressure profile will develop as a result of lower efficiency of the hub sections compared with the mean or tip values. Undoubtedly, the flow within a turbine is considerably more complex than

that assumed for the analysis procedure. In order to provide a means of simulating the redistribution of the flow within blade rows, the analysis procedure incorporates a simple interfilament mixing model (Ref 1). In the regions of high loss, low-momentum flows will occur and low-momentum fluid will migrate under the influence of the mainstream static pressure field and/or the centrifugal force field of the rotor. Thus, it is to be expected that total-pressure profiles predicted on a stream-filament basis will be less uniform than those obtained from test data. The simple mixing model used in the analysis can be used to reduce or eliminate total-pressure and total-temperature profiles. It should be pointed out that at the present time the selection of the mixing factors will have to be based on the judgment of the program user. However, the effects of mixing can be assessed analytically using the program.

One of the design examples supplied by NASA was a twin-spool turbine with two hp spool stages and five lp spool stages. Sample Case II of Reference 2 is based on the design requirements of the hp spool and the first three stages of the lp spool. This turbine was analyzed using the mixing parameter to produce results which are consistent with the assumption that the value of stage inlet total pressure used in the calculation of stator exit total pressure is radially constant. Hence, the total-pressure profile was not allowed to develop in the manner it would have done in a purely stream-filament analysis. An analysis with identically the same specifications as Sample Case II, with the exception of the mixing in the stator rows, failed to produce a solution at the exit of the second rotor of the lp spool. The results of the two analyses for the stator row which preceded the design station where the limiting loading condition was encountered are shown in Figures 8 and 9. Figure 8

shows the absolute flow angles at the stator inlet and stator exit and the following rotor relative inlet flow angle; Figure 9 shows the corresponding absolute and relative total pressures. With interfilament mixing assumed in the stator rows, the computed rotor relative inlet flow angle and relative total-pressure distributions are such that it is possible to obtain a solution for the next design station. With the purely streamfilament analysis, the meridional velocity near the hub of the stator exit plane falls significantly producing an increase of approximately 8 degrees in the absolute flow angle. This change is due to the predicted change in the stator exit absolute pressures. As a result, the rotor relative inlet flow angle is increased by approximately 12 degrees and the rotor relative total pressure is decreased by 1.2 psi (8270 N/m²) at the hub. These changes are sufficient to make it impossible for the rotor to extract the implicitly specified amount of work at the hub section and simultaneously satisfy the requirement for radial equilibrium.

Both analyses used radially uniform power output specifications. Hence, without interfilament mixing within the stator rows it would have been necessary to reduce the power output along the hub stream filament by an amount which would have raised the inlet total pressure at the inlet to the second stage of the lp spool by approximately 1.2 psi (8270 N/m^2) in order to obtain a solution at the exit of that stage.

Annulus Geometry

The annulus geometry is an important design variable. Obviously, the mean diameter of a stage and the annulus areas have always
been used as variables in the design of turbines and the program will, of
course, provide a means of comparing alternative designs. However, the

effects of the meridional slope and curvature of the flow are included in the flow field solution which has been programmed. Hence, slope and curvature of the annulus walls can be considered as analysis variables. The effects of these variables are qualitatively predictable from the radial equilibrium equation used in the analysis. The precise effect of a change in the slope or curvature of the annulus wall, however, cannot readily be obtained unless the computer program is used. At stator exit design stations, where the tangential velocity rather than meridional velocity dominates the radial equilibrium solution, it is quite possible that effects of changes in annulus slope and curvature will be small. At stage exit design stations, the effects could be considerably more pronounced; at stage exits the meridional velocity rather than tangential velocity will dominate the radial equilibrium equation. It is possible, therefore, that curvature of the annulus could be used to offset the deterioration of meridional velocity distribution that can occur in the presence of a total-pressure profile.

In the single-stage analyses presented later, a constant annulus area design is considered. Hence, since the analysis assumes that the meridional components of slope and curvature within the flow field are dependent on the annulus geometry, the effects of changes in annulus slopes and curvatures are not considered. However, in the multistage analysis of Sample Case II (Ref 2) the dimensions of the annulus were selected to produce a change of annulus flare at the inlet to the lp spool. The analysis of the multistage unit was repeated with the slope and curvatures of the annulus walls set equal to zero. The effect of the change on the meridional velocity distribution at the inlet to the lp spool is shown in Figure 10. For this design both hub and casing

radii increase through the lp spool and the slopes and curvatures are positive across the entire annulus. As was to be expected, the meridional velocity is increased at the casing and reduced at the hub.

PERFORMANCE PREDICTIONS FOR A SINGLE STAGE AT FOUR TIP DIAMETERS

Introduction

The design requirements of the single stage, used as an example of the application of the computer program, were specified by NASA and are as follows:

Inlet Total Temperature 518.7 deg R (288.2 deg K)

Inlet Total Pressure 14.696 psia (10.133 N/cm²)

Inlet Flow Angle 0 deg (--)

Mass Flow 45.51 lbm per sec (20.643 kg/sec)

Power Output 1287.5 hp (960.089 kw)

Rotational Speed 4660 rpm (--)

Specific Heat at Constant 0.24 Btu per 1bm deg R

Pressure (1004 J/kg deg K)

Specific Gas Constant 53.35 ft 1bf per 1bm deg R (287.0 J/kg deg K)

For the largest diameter turbine the casing and hub radii were specified to be constant at 18 and 14.465 inches (45.72 and 36.741 cms), respectively. In addition, the conservative design was specified to have a 50 per cent mean radius reaction corresponding to a tangential velocity of 758.7 ft per sec (231.5 m/sec) at the stator exit.

The geometry and performance of four stages differing in tip diameter, but having the same annulus areas were to be predicted. For the smallest diameter turbine in the series a value of tip radius of 13.5 inches (34.29 cms) was selected, this value being 75 per cent of the conservative design value. The dimension of the turbines, hereafter referred to as Turbines A, B, C, and D are tabulated below.

Turbine	Α	В	C	D
Casing Radius (ins)	18.0	16.5	15.0	13.5
(cms)	45.72	41.91	38.10	34.39
Hub Radius (ins)	14.465	12.549	10.499	8.215
(cms)	36.741	31.874	26.667	20.866

The stage hub-to-tip radius ratios vary from 0.803 to 0.608 and the hub speed of Turbine D is approximately 57 per cent of that for Turbine A.

The validity of the comparison of the predicted performances is, of course, dependent on the loss correlation assumed. For the analysis, the performance of the individual elements of the blading is internally computed from a correlation of total-pressure-loss coefficients. No interfilament mixing was specified.

The Total-Pressure-Loss Assumptions

The program input includes the nine coefficients of the loss correlation developed in Reference 1. For this particular analysis the total-pressure-loss coefficient of an element of the blading is defined as follows:

$$Y = \frac{|\tan \beta m - \tan \beta ex|}{(0.6 + 0.8 \cos \beta ex)} \left(\frac{0.03 + 0.157255}{\sqrt{\text{Vex}}} \right)^{3.6} \text{ if } \frac{\sqrt{m}}{\sqrt{\text{Vex}}} \le 0.6$$

$$Y = \frac{|\tan \beta m - \tan \beta ex|}{(0.6 + 0.8 \cos \beta ex)} \left\{ \frac{0.055 + 0.15}{\sqrt{\text{Vex}}} \right\}^{3.6} \text{ if } \frac{\sqrt{m}}{\sqrt{\text{Vex}}} > 0.6$$

where suffices in and and denote inlet and exit conditions relative to a stator or a rotor section. In addition, the total-pressure-loss coefficient was limited to a value of 1.0. Throughout the analysis no additional loss factors were specified. Hence, no attempt is made to account for tip clearance losses.

Design Optimizations

At the relatively high hub/tip ratio of Turbine A, no great variation of stage efficiency with the radial variation of the analysis variables is to be expected. Since the annulus dimensions were preselected together with a mean-line stage reaction, the only remaining analysis variables are the radial distribution of stator exit angle (or tangential velocity) and the power output function. As previously indicated, the variations of tangential velocity and power output are somewhat limited. The two sets of analysis variables of Sample Case I of Reference 2 showed a less than 0.1 per cent difference in efficiency between a design with a free-vortex distribution of stator exit flow angles and a uniform distribution of power output and a design with radially constant stator exit flow angle and a distributed power output. Therefore, the major investigation of the effect on over-all stage performance of alternative sets of analysis variables was carried out using the annulus geometry of Turbine D.

Variations in the power output function were systematically generated using parabolic distributions of the power output function with respect to the nondimensional mass flow function. The use of the parabolic function has the property that a linear variation of streamline total temperature drop is obtained. In addition, values of the power output function are readily computed for selected ratios of hub and casing total temperature drops. The expression used for the nondimensional power function p is as follows:

$$p = \frac{2f}{1+f} \omega(t) + \frac{1-f}{1+f} \left\{ \omega(t) \right\}^2$$

where $\omega(r) = \frac{J-I}{n-I}$ and J=I at the hub and J=n at the casing. The power coefficient, f, is equal to the ratio of total temperature drop at the hub to that at the casing; the ratio of hub-to-mean streamline total temperature drop is $\frac{2f}{I+f}$. The coefficient f is used later to identify the power output specification.

The other variables considered in the optimization of Turbine D were the mean radius value of the stator exit flow angle and the radial variation of this angle. These two analysis variables also control the mean streamline value of stage reaction.

Variation of Efficiency With Power Output Distribution

Three alternative distributions of power output were investigated for a stage with a radially constant stator exit absolute flow angle of 67 degrees. These same distributions had coefficients of 0.85, 0.87, and 0.89 in a parabolic power output function. This series of analyses has been discussed earlier in connection with the possible range of the power output function and the principal features of the stage aerodynamics have been illustrated in Figures 4 and 5. The design with the lowest value of total temperature drop at the hub ($\int = 0.85$) had the highest total-to-total efficiency, but the highest total-to-static efficiency was obtained with the intermediate value of \int . The actual efficiencies predicted are presented in the following table.

Design Number '	1	2	3
Power Coefficient	0.85	0.87	0.89
Total-to-Total Efficiency (per cent)	88.34	88.25	88.16
Total-to-Static Efficiency (per cent)	69.60	69.68	69.63

The actual variations of efficiency are relatively small. While some further improvements might be expected from the specification of power output distributions other than the parabolic type used, it is unlikely that the highest predicted efficiency will be significantly greater than any of those above.

Variation of Efficiency With Stator Angle Distribution

With a constant power output distribution (using f = 0.87), alternative stage designs were analyzed for three radial variations of the absolute flow angle at stator exit. Results from this investigation have been presented earlier in the discussion of the analysis variables as Figures 1 and 2. It was pointed out that the major effect on the velocity diagrams of the changes in the angle distribution was to change the meridional velocity distribution; the tangential velocities were not significantly altered by the angle change. The predicted efficiencies of the three stages are tabulated below.

Design Number	4	5	2
Hub-to-Tip Stator Angle Variation (deg)	72.1 - 62.1	69.6 - 64.6	67
Total-to-Total Efficiency (per cent)	89.08	88.74	88.25
Total-to-Static Efficiency (per cent)	68.65	69.14	69.68
Mean Streamline Stage Reaction	0.669	0.615	0.536

From these results it would at first appear that there is a significant improvement in total-to-static efficiency by specifying a constant angle stator design rather than a "free-vortex". Conversely, the free-vortex

design yields a higher total-to-total efficiency. However, the change in efficiency levels is due to a change in the mean stage reaction rather than due to the variation in stator angle distribution as such. The effective flow area at stator exit is changed by the variation in stator exit flow angles; the constant angle design has a smaller effective flow area than the free-vortex design and, hence, its mean stage reaction is lower. To provide a valid comparison of the effect of angle distribution, the radially constant angle has to be decreased to increase the effective stator exit flow area and hence stage reaction. By decreasing the level of constant angle to 66.8 degrees, a stage with a mean streamline stage reaction of 0.621 is produced. The predicted efficiencies of this new stage are 88.82 and 69.76 for total-to-total and total-to-static, respectively.

The radial variations of the row velocity ratio and the local total-to-total isentropic efficiency of Design 5 above and the constant section design of nearly comparable mean streamline stage reaction (Design 7) are compared in Figure 11. It will be seen that the radial variations of local blade velocity ratios are similar. Although the constant section stator design now has a higher total-to-total efficiency, it is extremely likely that the difference in efficiency level would have been even less significant if the constant angle had been selected to yield exactly the same level of mean streamline stage reaction.

Although the investigation has covered a relatively small range, it must be concluded that the stream-filament analysis will not predict significant variations in stage efficiencies for changes in stator exit angle distribution when these distributions are selected to produce a constant value of mean streamline stage reaction.

The Variation of Efficiency With Stage Reaction

To investigate the effect of changes in the stage reaction, a series of four stage designs were investigated. These analyses used constant stator exit angle specifications and a constant power output distribution ($\frac{1}{2}$ = 0.87). The principal results of this investigation are tabulated below.

Design Number	8	9	2	7
Stator Exit Flow Angle (deg)	67.16	67.08	67.00	66.8
Total-to-Total Efficiency (per cent)	87.48	87.945	88.25	88.82
Total-to-Static Efficiency (per cent)	70.77	70.13	69.68	68.76
Mean Streamline Stage Reaction	0.411	0.488	0.536	0.621

Stage reaction is conventionally defined as the ratio of static temperature drop across the rotor to the stage total temperature drop; the mean streamline value is obtained from the temperatures corresponding to the mass flow mean streamline. The results given in the above table are also shown in Figure 12. The opposing tendencies are not entirely unexpected and which value of stage reaction would be considered optimum will depend on the particular application of the turbine stage.

The predicted effect of a change in reaction is, of course, dependent on the loss correlation used in the analysis. The major factor in the change in the stage performance is the change in the relative velocity ratio for the rotor blade elements; Figure 13 compares rotor velocity ratios of the two extremes of stage reaction (Designs 7 and 8). This figure also compares the computed total-pressure-loss coefficients and the rotor relative exit Mach numbers of the two designs. The lower

reaction design has a 33 per cent high rotor hub total-pressure loss coefficient, but the effect on mass flow weighted stage total-to-total efficiency is offset to some extent by the lower rotor relative exit Mach number; the change in total-to-total efficiency is only 1.34 percentage points.

Variation of Efficiency With Stage Loading

From the design optimization investigation it can be concluded that changes in the power output distribution and in the stator exit flow angle distribution do not significantly affect the performance of the resulting design. However, the ranges of these design parameters for which mechanically acceptable blading geometries are computed are relatively small. The effect of a change in mean stage reaction on the predicted stage efficiency of Turbine D is more significant. Nevertheless, the range of efficiencies predicted for a range of mean stage reaction of the small diameter turbine is less significant than the reduction in efficiency level resulting from an increase in mean stage loading which accompanies the reduction of the tip diameter from the value used in Turbine A. Hence, the over-all effect on performance of a reduction in tip diameter can be reasonably illustrated by any systematic variation of the other analysis variables. For the four designs finally selected, the complete computer outputs are given in Appendix I.

For the four turbines, a constant stator flow angle is specified for each. The actual angles specified are 66.7, 66.9, 67.1, and 67.16 degrees for Turbines A, B, C, and D, respectively. These specifications vary the mean streamline reaction from 0.5 for Turbine A to 0.411 for Turbine D. The particular variation finally selected was judged to be a

suitable compromise between the levels of total-to-total and total-tostatic efficiencies for the small diameter turbine.

The specifications for the power output distribution all use the parabolic variation of the nondimensional power function with the nondimensional mass flow function. The actual distributions are identified by the values of \oint which are 0.95, 0.94, 0.93, and 0.87 for Turbines A, B, C, and D, respectively. The mean streamline total temperature drop for each turbine is constant and the hub streamline temperature drops are 97.5, 97, 96.5, and 93 per cent of the mean streamline value for Turbines A, B, C, and D, respectively. The reduction of hub temperature drop with decreasing hub speed and hub section reaction was found to be necessary in order to avoid a limiting loading condition.

In addition to the full computer output of Appendix I, which can be used for detailed comparisons of the designs, the effects of the tip radius change are summarized in Figures 14, 15, 16, 17, and 18. In Figure 14 the total-to-total and total-to-static efficiency variations with tip radius are shown. As stated earlier, by varying the mean streamline stage reactions of Turbines B, C, and D, the rate of deterioration of total-to-total efficiency could have been lessened at the expense of the deterioration in total-to-static efficiency. For the selected designs, the reductions in efficiencies corresponding to a 25 per cent reduction in tip radius are 5.6 and 9.2 percentage point for the total-to-total and total-to-static, respectively.

In Figure 15, the turbines are compared in terms of schematic side view. Also noted on this figure are the specifications for the analysis variables and a performance summary of each design. The mean level of loading for the stages are indicated by the mean blade-to-jet speed ratio.

This ratio, \boldsymbol{v} , is defined as follows:

$$\nu = \frac{\overline{a}}{\sqrt{2g_{\circ}TG_{p}\Delta T_{os}}}$$

where $\overline{\omega}$ is the mean blade speed and ΔT_{os} is the isentropic total temperature drop. The value of ϑ for the four designs are 0.592, 0.526, 0.456, and 0.378.

Velocity diagrams for hub, mean, and casing radii are given in separate figures. Figure 16 compares the four sets of hub section diagrams; Figure 17, the mean sections; and Figure 18 presents the casing section diagrams. In the case of the mean section diagrams, it should be noted that the radial location of the mean streamline rather than the arithmetic mean radius is used. Hence, the stator exit and stage exit diagram for the mean section have differing section radii and blade speeds.

Concluding Remarks

The predicted variation of total-to-total efficiency with increasing stage loading can be considered satisfactory. The predicted values are, of course, directly dependent on the loss correlation assumed in the analysis. The correlation used was based on the correlation of achievable stage efficiency presented as Figure 4 of Reference 1. This data used for the loss coefficient correlation were derived from a mean-line analysis and the correlation has been applied in the computer program to individual elements, without any distinction between stator and rotor or hub and casing sections of the blading. A review of the predicted variations of streamline efficiencies suggests that the assessment of element performance has produced realistic values. It is interesting to compare the predicted efficiencies with the "achievable" efficiency obtained from

Figure 4 of Reference 1. The values of mean stage loading factor and stage flow factor, used in the simple correlation of achievable turbine efficiency together with a comparison of the predicted efficiency and "achievable" efficiency are given in the following table.

	Loading Factor $\gamma = 9 \frac{3 \sqrt{10} \Delta }{u^2}$	Flow Factor $\phi = \frac{\sqrt{2}}{2}$	''Achievable'' Efficiency	Predicted Efficiency
Turbine A	1.15	0.57	0.942	0.931
Turbin e B	1.43	0.66	0.937	0.920
Turbine C	1.87	0.77	0.921	0.902
Turbine D	2.57	0.97	0.881	0.875

The "achievable" efficiency does not make any allowance for the hub/tip ratio of the stage. Hence, until such time as experimental data are available from stages designed using the design analysis program, the loss correlation recommended and used in the current analysis can be considered satisfactory.

During the investigation of the effect on predicted performance of changes in the analysis variables, no significant change in efficiency level was predicted if the mean stage reaction was maintained constant. It is true that the detailed investigation was concentrated mainly on one stage and that only relatively simple radial variations of the stator exit conditions and stage power output were considered. Nevertheless, it is quite probable that a purely stream-filament analysis, limited to the solution of the flow field at interblade row stations and with total pressure losses assessed for individual streamlines, will not predict the actual performance difference of designs having the same annulus geometry. The actual performance of a blade row is undoubtedly affected by the overall design of the row. While relatively small differences in performances

are likely to be predicted for alternative blade twists using the stream-filament approach, the actual difference in performance of the turbine stages could be significant. However, a design analysis program based on the stream-filament approach could be an important tool for use in a fully integrated turbine research program.

CONCLUSIONS

- 1. The prediction of the design-point blade row geometry and stage performance of four single stages having the same over-all design requirements has shown a 5.6 per cent drop in total-to-total efficiency and a 9.2 per cent drop in the total-to-static efficiency for a 25 per cent reduction in tip diameter from a conservative design value. These changes were for a particular variation of stage reaction; higher values of total-to-total efficiency for the most highly loaded stage could have been achieved at the expense of the total-to-static efficiency and vice versa.
- 2. In an investigation of the effects of changes in the analysis variables, it was established that the radial variation of tangential velocities at stator exits are limited by the radial equilibrium requirement to distributions which are close to "free-vortex" distributions. Small changes in whirl distribution specifications produce relatively large changes in the meridional velocity and absolute flow angle distributions.
- 3. Using a realistic correlation of the total-pressure-loss coefficients for individual blade elements, it has been shown that the specification of a uniform distribution of power output frequently produces a limiting loading condition at rotor hub sections. It is then necessary to reduce the work output of these sections in order to obtain a solution of the stage exit flow field which will simultaneously satisfy the loss specification and the radial equilibrium requirement. The redistribution of the power output, however, requires careful consideration in the case of highly loaded stages to avoid the transfer of the limiting

loading condition to other sections of the blading.

4. While the correlation of total-pressure-loss coefficient used in the present analysis appears to give realistic solutions, it will be necessary to review the correlation using experimental data from stages designed using the stream-filament approach. The extent to which the performance of a stage is affected by interfilament mixing and the over-all design of the blading (as opposed to the design of individual blade elements) should also be investigated analytically and experimentally.

REFERENCES

- Analysis of Geometry and Design Point Performance of Axial Flow Turbines, Part I Development of the Analysis Method and the Loss Coefficient Correlation (NREC Report No. 1125-1), Northern Research and Engineering Corporation, Cambridge, Massachusetts, September 14, 1967.
- 2. Analysis of Geometry and Design Point Performance of Axial Flow Turbines, Part II Computer Program (NREC Report No. 1125-2), Northern Research and Engineering Corporation, Cambridge, Massachusetts, January 31, 1968.
- 3. Stabe, Roy G., et al, Cold-Air Performance Evaluation of a Scale-Model Fuel Pump Turbine for the M-1 Hydrogen-Oxygen Rocket Engine (NASA TN D-3819), National Aeronautics and Space Administration, Washington, D. C., February, 1967.

FIGURES

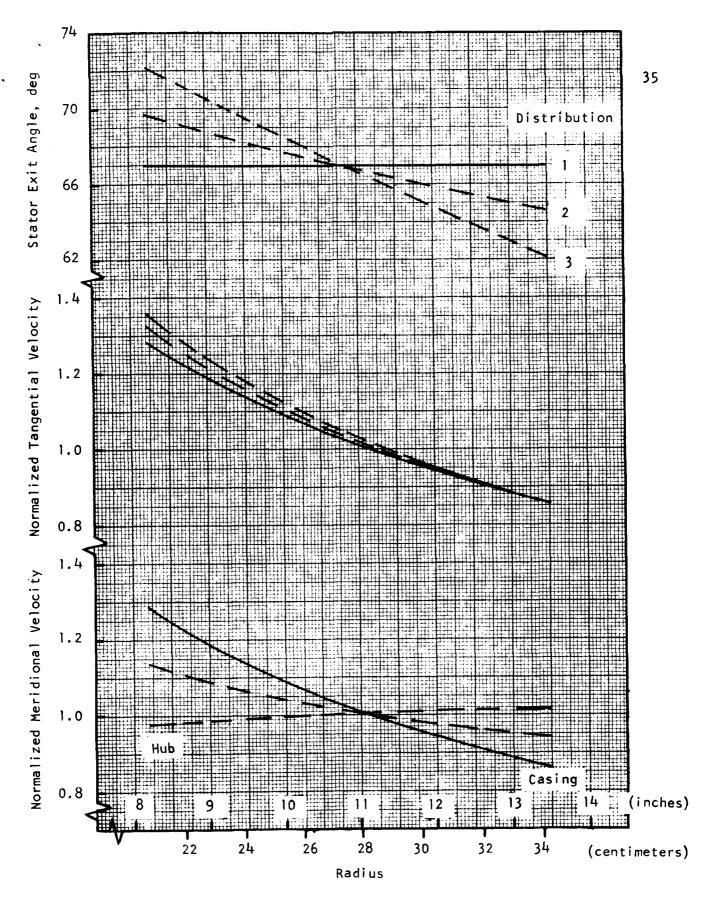


FIGURE 1 - TANGENTIAL AND MERIDIONAL VELOCITY
DISTRIBUTIONS AT STATOR EXIT FOR THREE STATOR EXIT
ANGLE DISTRIBUTIONS (HIGHLY LOADED STAGE - TURBINE D)

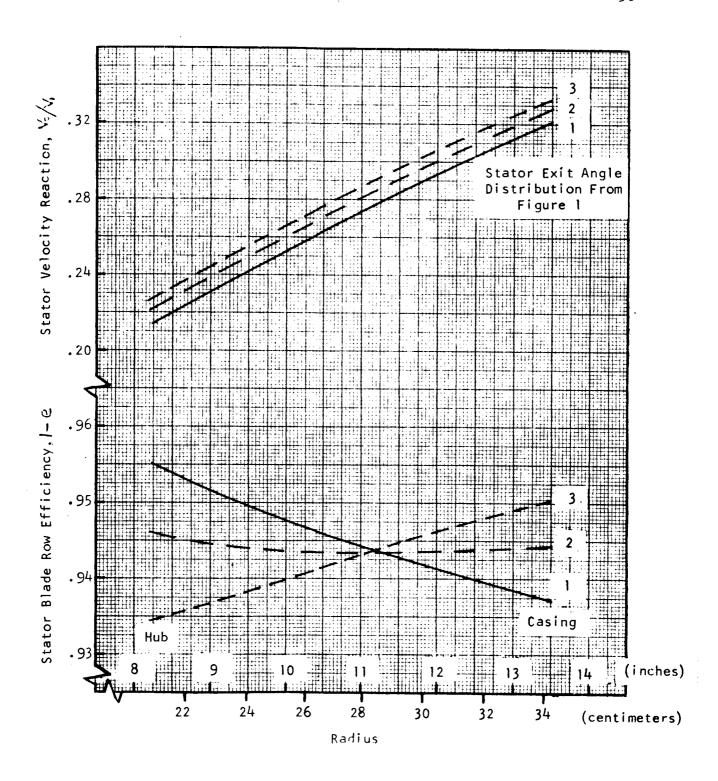


FIGURE 2 - STATOR VELOCITY RATIO AND BLADE ROW EFFICIENCY VARIATION FOR THREE STATOR EXIT ANGLE DISTRIBUTIONS (TURBINE D)

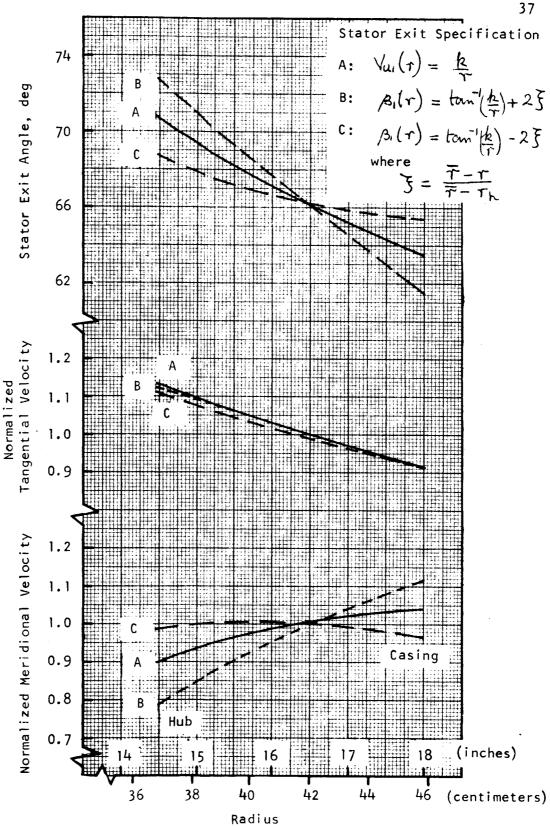


FIGURE 3 - TANGENTIAL AND MERIDIONAL VELOCITY DISTRIBUTIONS AT STATOR EXIT FOR THREE SPECIFICATIONS (CONSERVATIVE STAGE - TURBINE A)

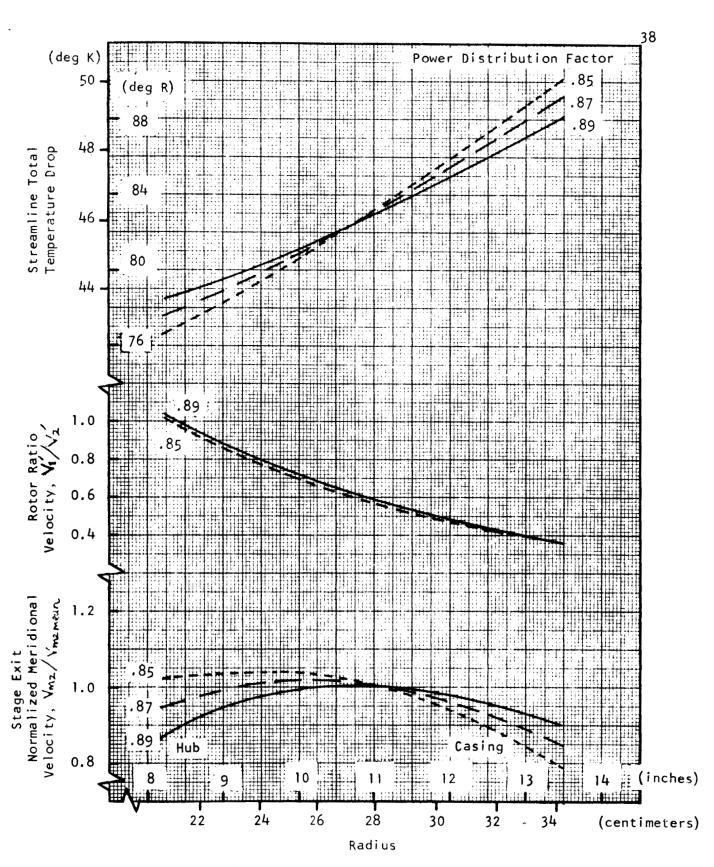


FIGURE 4 - THE EFFECT OF THE POWER OUTPUT
DISTRIBUTION ON THE MERIDIONAL VELOCITY AT STAGE EXIT,
STREAMLINE TOTAL TEMPERATURE DROP, AND ROTOR REACTION (TURBINE D)

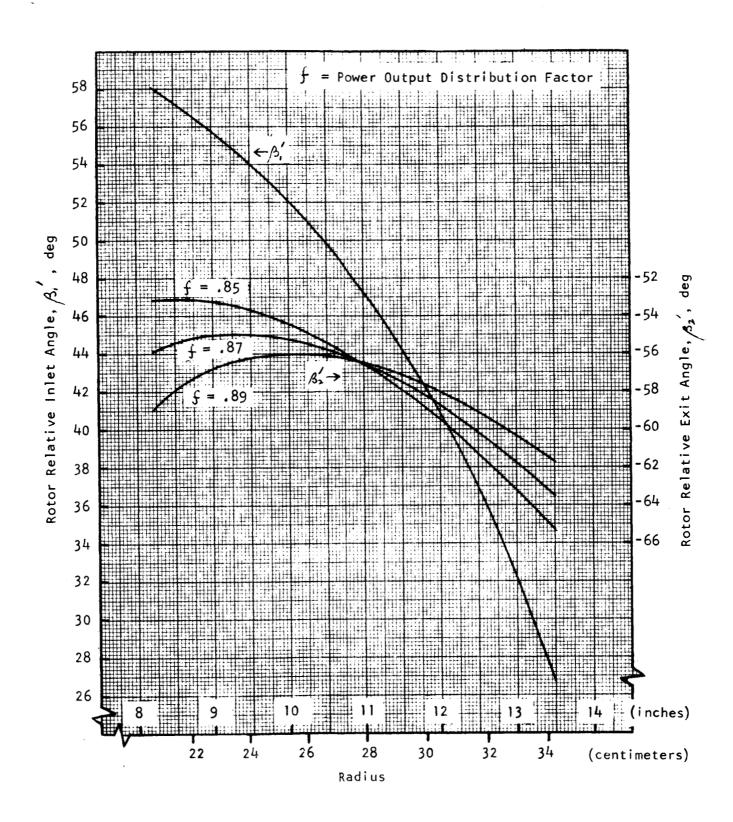


FIGURE 5 - ROTOR RELATIVE FLOW ANGLES
FOR THREE POWER OUTPUT DISTRIBUTIONS (TURBINE D)

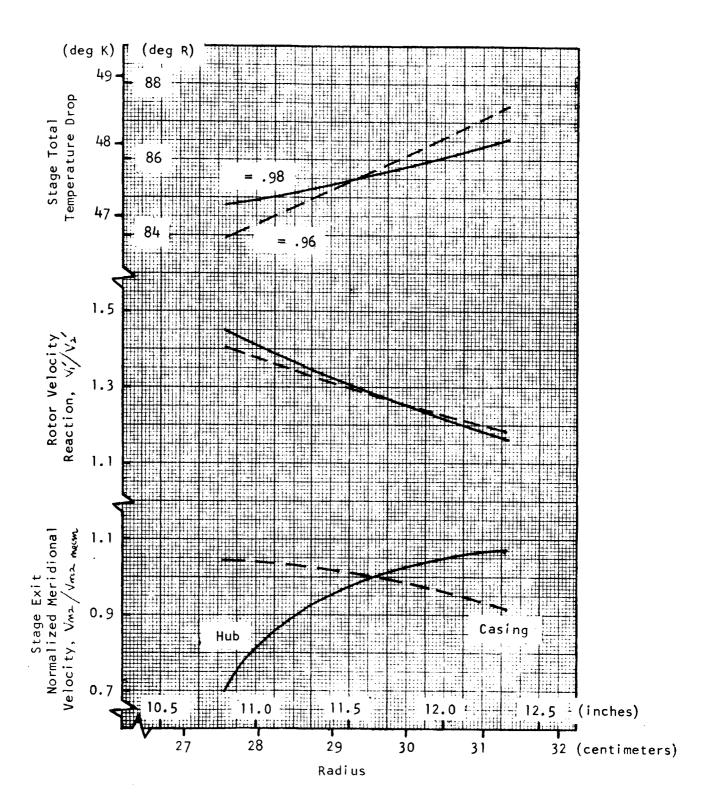


FIGURE 6 - THE EFFECT OF POWER OUTPUT
DISTRIBUTION ON THE STAGE EXIT MERIDIONAL
VELOCITY AND ROTOR REACTION DISTRIBUTIONS (FUEL-PUMP TURBINE)

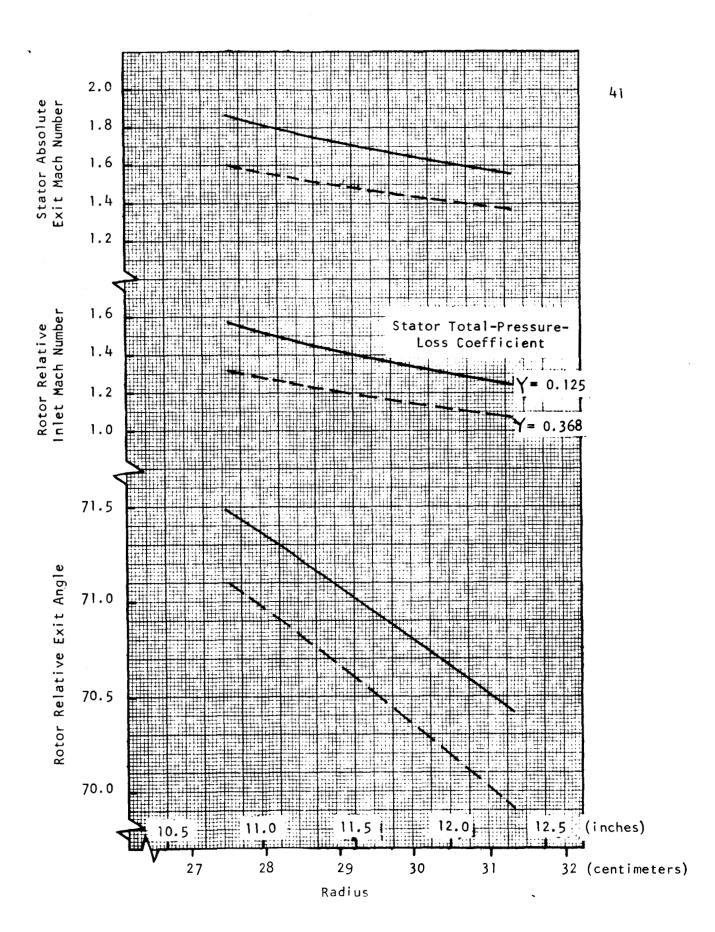
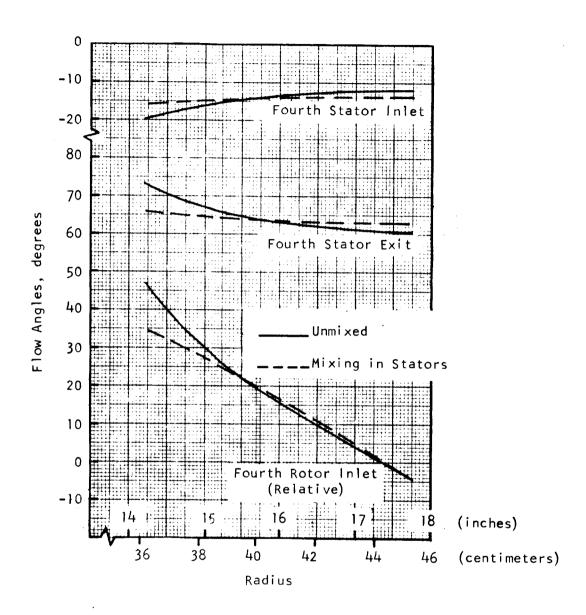
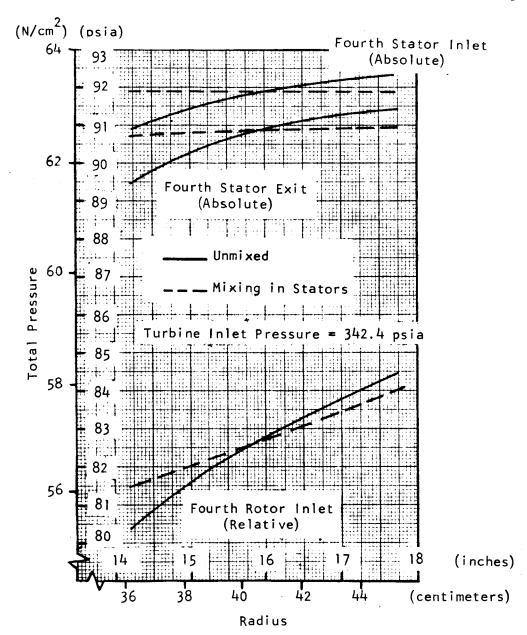




FIGURE 7 - THE EFFECT OF THE ASSUMED STATOR LOSS ON THE FLOW PARAMETERS AT EXIT FROM A SUPERSONIC STATOR (FUEL-PUMP TURBINE)

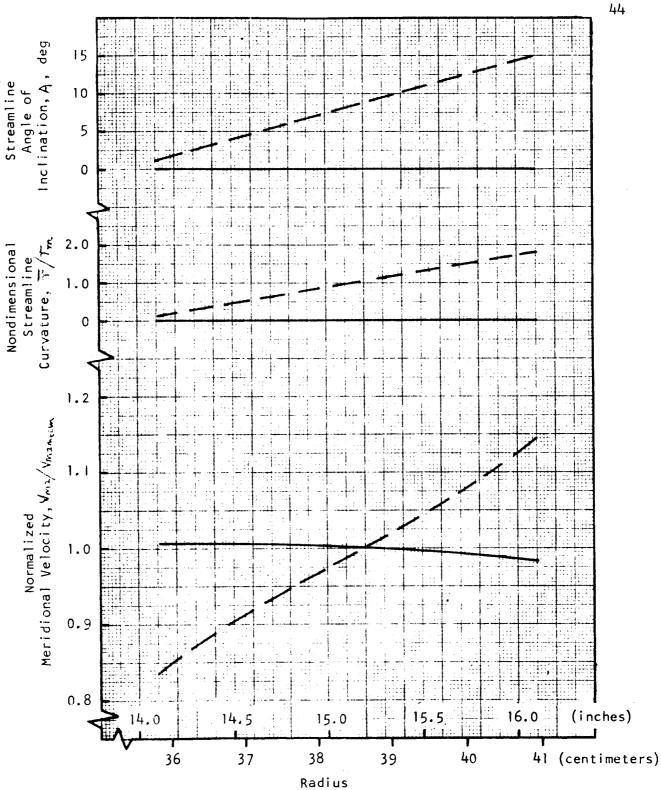


FIGURE 10 - THE EFFECT OF THE MERIDIONAL COMPONENTS OF STREAMLINE .
SLOPE AND CURVATURE ON THE MERIDIONAL VELOCITY DISTRIBUTION AT A STAGE EXIT

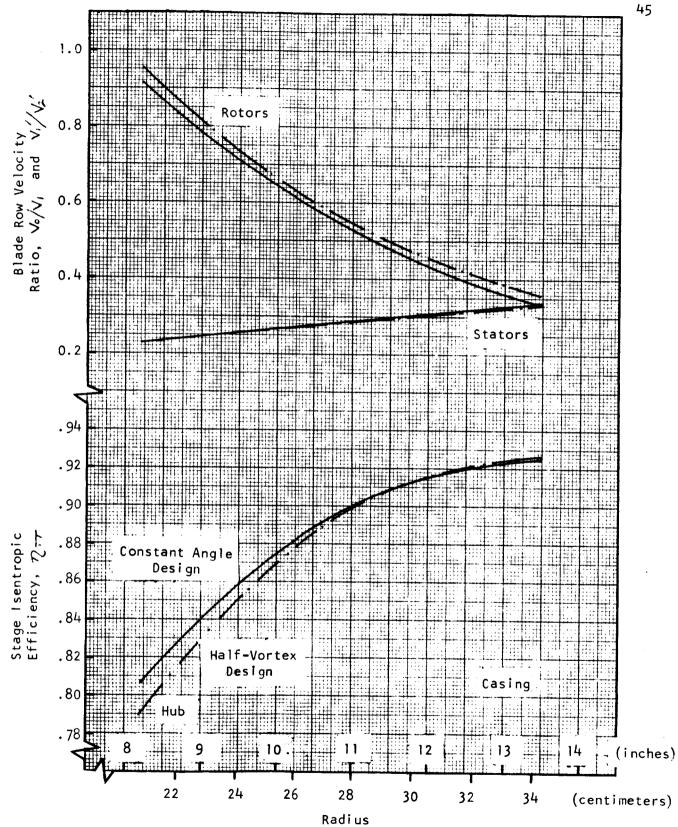


FIGURE 11 - THE VARIATIONS OF LOCAL TOTAL-TO-TOTAL EFFICIENCY FOR ALTERNATIVE STATOR SPECIFICATION

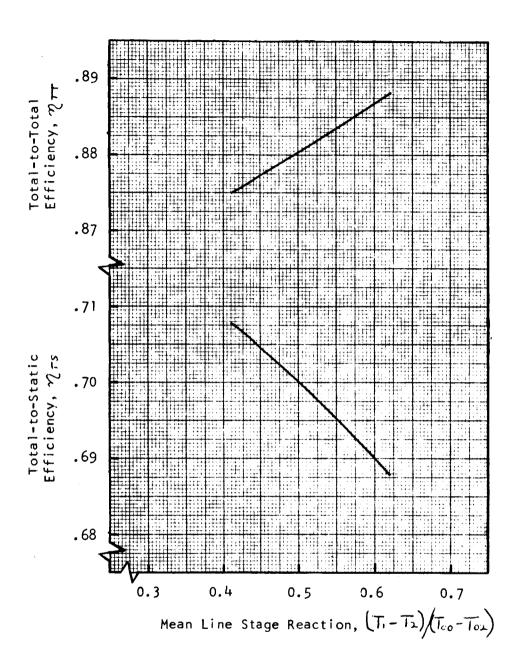
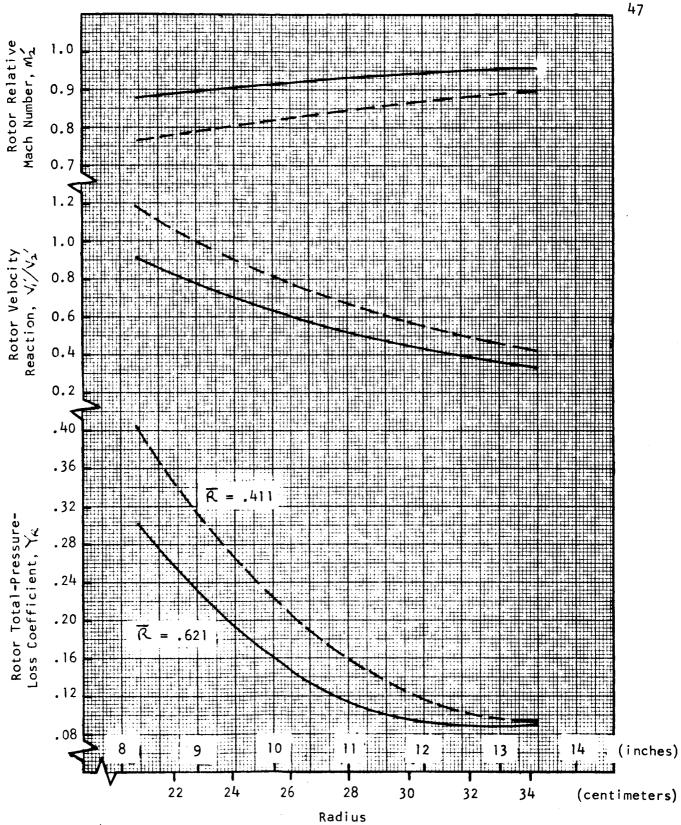
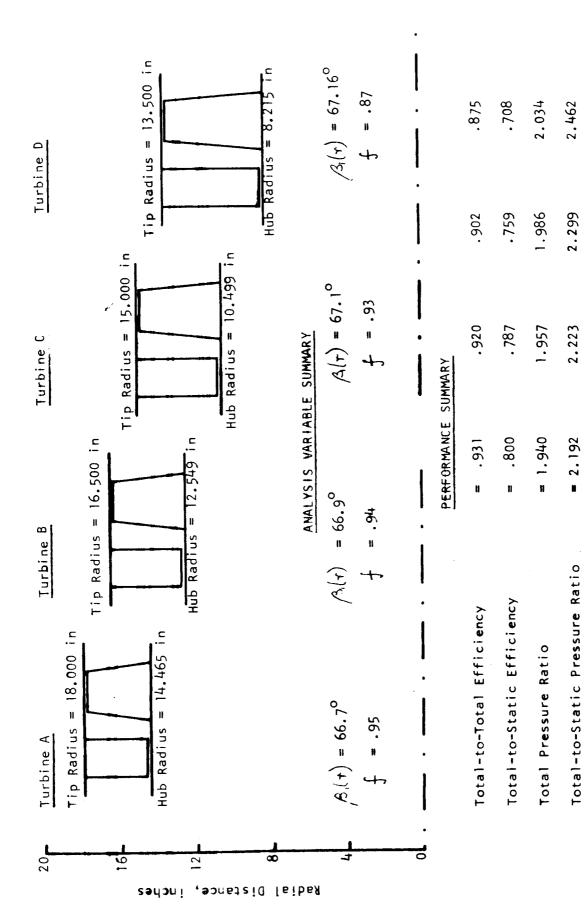



FIGURE 12 - VARIATIONS OF TOTAL-TO-TOTAL AND TOTAL-TO-STATIC EFFICIENCIES WITH MEAN STREAMLINE STAGE REACTION (TURBINE D)

- ROTOR EXIT MACH NUMBER TOTAL-PRESSURE-LOSS LEVELS OF MEAN



FIGURE 14 - TOTAL-TO-TOTAL AND TOTAL-TO-STATIC EFFICIENCY VARIATIONS WITH STAGE TIP RADIUS (TURBINES A, B, C, AND D)


.378

.456

. 526

. 592

Blade-to-Jet Speed Ratio

SPECIFICATIONS, AND PERFORMANCE DATA FOR THE FOUR TURBINES FIGURE 15 - SUMMARY OF ANNULUS GEOMETRIES,

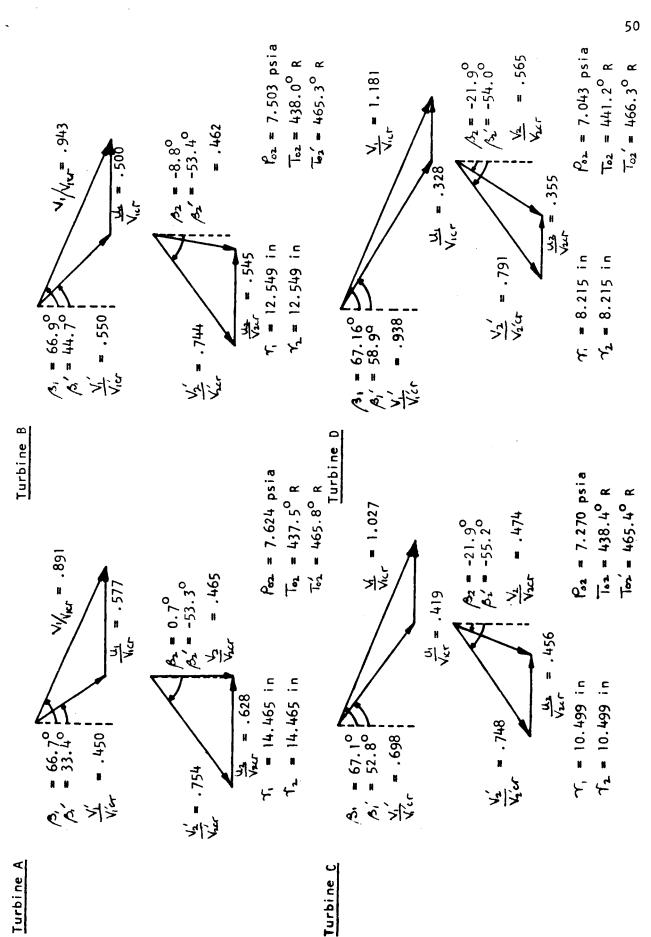


FIGURE 16 - COMPARISON OF THE HUB SECTION VELOCITY DIAGRAMS

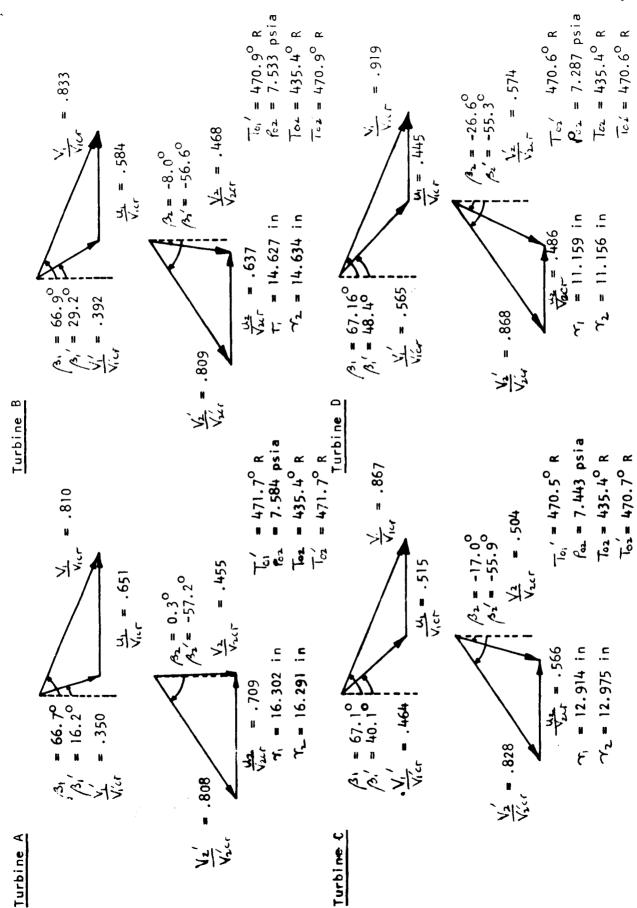


FIGURE 17 - COMPARISON OF THE MEAN SECTION VELOCITY DIAGRAMS

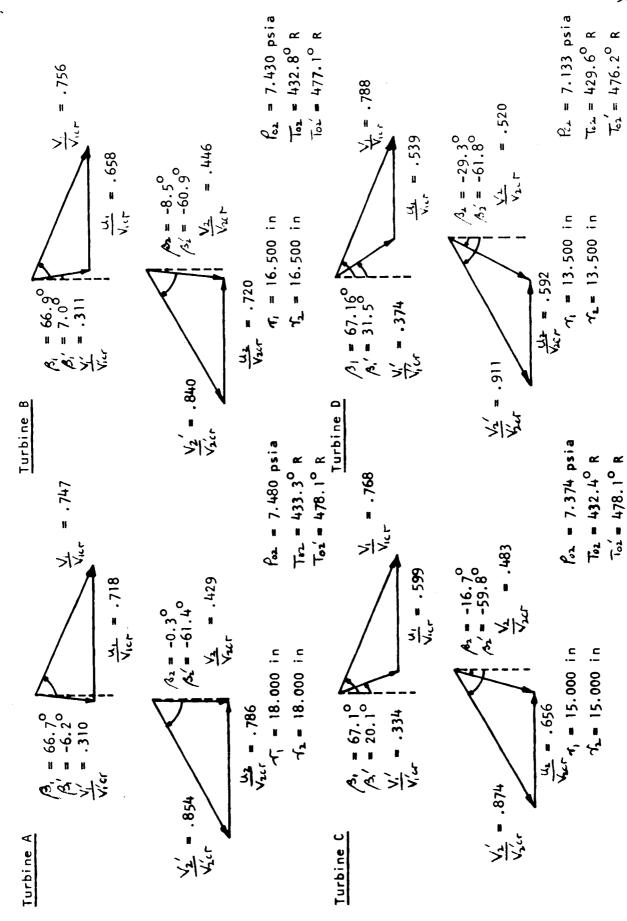


FIGURE 18 - COMPARISON OF THE CASING SECTION VELOCITY DIAGRAMS

NOMENC LATURE

Symbols	Description	<u>Units</u>
Α	Angle of streamline slope in the meridional plane	d e g
Ģ	Specific heat at constant pressure	Btu/lbm deg R (J/kg deg K)
e	Kinetic-energy-loss coeffi- cient (= $1 - \sqrt{\frac{1}{\sqrt{2} n_s}}$)	
£	<pre>index for parabolic power out- put distribution</pre>	
9.	Constant in Newton's law	lbm/lbf ft/sec ²
j	Mechanical equivalent of heat	ft 1bf/Btu
j	Index on streamlines	
n	Number of streamlines	
P.	Total pressure	psi (N/cm ²)
P	Nondimensional power function $= \frac{\omega_T J c_P}{550 H_T} \int_{a}^{\omega_{(T)}} d\omega_{(T)}$	
\overline{R}	Stage reaction = $\frac{1}{162} - \frac{1}{162}$	
7	Radius	in or ft (cms)
I Im	Meridional component of stream- line curvature	ft ⁻¹ (m ⁻¹)
To	Total temperature	deg R (deg K)
u	Blade speed	ft/sec (m/sec)
V	Velocity	ft/sec (m/sec)
w(1)	Nondimensional mass flow function $= \frac{2\pi}{\omega_r R} \int_0^{\infty} \frac{P_o}{I_0} \left[1 - \frac{V^2}{25 J GpT_0} \right]^{\frac{1}{2} - 1} V_m \omega_s A_T dT$	
ß	Flow angle	d e g

Symbols	Description	<u>Units</u>
$\eta_{ m l}$	Total-to-total isentropic effi- ciency	
Yrs	Total-to-static stage isentropic efficiency	
٠)	Blade-to-jet speed ratio = $\frac{u}{\sqrt{2} \int_{0}^{\infty} \sqrt{s_{es}}}$	
Subscripts	Description	
C	Casing	
Cr	Condition at Mach 1	
ex	Exit	
h	Hub	
in	Inlet	
m	Meridional	
s	Isentropic	
и	Tangenti a l	
x	Axial	
⋄	Stage inlet	
1	Stator exit/rotor inlet	
2.	Stage exit	
Superscripts	Description	
/	Relative to rotor	

Mean or mass flow weighted value

APPENDIX 1

COMPUTER OUTPUT FOR TURBINE DESIGNS A, B, C, AND D

The following pages contain the full computer output for the four single-stage designs. The design requirements and loss coefficient correlation are held constant for the four designs as the tip diameter is decreased by 25 per cent from a value consistent with a conservative design.

** PREGRAM TO - AEROCYNAMIC CALCULATIONS FOR THE CESTON OF AXIAL TURBINES **

NASA SINGLE STAGE TURBINE

*** GENERAL INPUT SATA ***

NUMBER CF SPOCLS = 1
NUMBER CF SETS OF ANALYSIS VARIABLES = 1
NUMBER OF STREAMLINES = 9

GAS CONSTANT - 53.3500C LEF FT/LBM DEG R
INLET MASS FLOW - 45.510CC LBM/SEC

. TABLLAR INLET SPECIFICATIONS .

RACTAL	TOTAL	TCTAL	ABSCLUTE
COORDINATE	TEMPERATURE	PRESSURE	FLCW ANGLE
(IN)	(DEG R)	(PSI)	(DEG)
16 0000	510 70	14 4040	•

*** SPCCL INPLT DATA ***

** DESIGN RECUIREMENTS **

RGTATIVE SPEED = 466C.0 RPM POWER OUTPLT = 1287.5C HP

** ANALYSIS VARIABLES **

NUMBER OF STAGES = 1

• POWER-CUTPUT SPLIT •

FRACTION OF STAGE NUMBER SPORT POWER CLIPLT

1.000

• SPECIFIC-HEAT SPECIFICATION •

CESIGN STATION NUMBER	SPECIFIC HEAT (BTU/LEM DEG R)			
ı	C.24CCC			
2	C.24CCC			
. 3	C-24C0C			

* ANNULLS SPECIFICATION *

STATION NUMBER	AXIAL POSITION	HUB RADIUS	CASING RADIUS
ı	0.	14.465(18.0000
. 2	1.0000	14.465C	18.0000
3	2. CCOC	14.4650	18.0000
i i	3.0000	14.4650	18.0000
5	4-000C	14.4650	18.000

. BLAGE-RCW EXIT CONDITIONS .

	HACIAL	WHIRL
STATOR L	PCSITION	ANGLE
	(10)	(DEG)
	14.4650	66.700
	15.3487	66.700
	16.2325	66.700
	17.1163	66.700
	18.0000	66.700

		NCNDIMENSIONAL
	STREAMLINE	PCHER DUTPL1
RCTOR 1	NUMBER	FUNCTION
	1	с.
	2	C-1222C
	3	C-24515
	4	C.36859
	5	C.49359
	6	C.61859
	7	0.74519
	e	C. £722C
	ė	1.0000

. BASIC INTERNAL LOSS CORRELATION .

THE PRESSURE-LOSS CCEFFICIENT COMPUTED IN THIS MANNER MAY NOT EXCEED A LIPIT OF 1.CCCCOCCO

*** OUTPUT OF SPOCE DESIGN ANALYSIS ***

** STATER INLET 1 **

RADIAL	MASS-FLCH					ABSOLUTE	ARSCLUTE	485011175	*******	
CSITI CN (IN)	FUNCTION (LEP/SEC)	PERICIONAL VELOCITY (FPS)	AXIAL VELOCITY (FPS)	WHIRL VELCCITY (FPS)	ABSCLLTE VELCCITY (FPS)	MACH NUMBER	TCTAL PRESSURE (PSI)	ARSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW ANGLE (DEG)	*
14.4650	0.	243.432	243.432	c.	243.432	0.21909	14.6960	518.70	с.	
14.9526	5.68875	243.432	243.432	0.	243.432	0.21509	14.6960	518.70	0.	
15.4249	11.37750	243.432	243.432	C.	243.432	C.219C9	14.6960	518.70	0.	•
15.8831	17.06625	243.432	243.432	0.	243.432	0.21909	14.6960	518.70	0.	٠
16.3284	22.75500	243.432	243.432	с.	243.432	0.21909	14.6960	518.70	c.	*
16.7620	28.44375	243.432	243.432	0.	243.432	0.21909	14.6960	518.70	0.	4
17-1846	34.13250	243.432	243.432	0.	242.432	C. 21909	14.6960	518.70	0.	
17.5970	39.82125	243.432	243.432	0.	243.432	C.21909	14.6960	518.70	0.	
18.0000	45.51000	243.432	243.432	с.	243.432	C.21909	14.6960	518.70	0.	•
	(IN) 14.4650 14.9526 15.4249 15.8831 16.3284 16.7620 17.1846 17.5970	(IN) (LEM/SEC) 14.4650	(IN) (LEM/SEC) (FPS) 14.4650 0. 243.432 14.9526 5.68875 243.432 15.4249 11.37750 243.432 15.8831 17.06625 243.432 16.3284 22.75500 243.432 16.7620 28.44375 243.432 17.1846 34.13250 243.432 17.1846 34.13250 243.432 17.5970 39.82125 243.432	(IN) (LEP/SEC) (FPS) (FPS) 14.4650 0. 243.432 243.432 14.9526 5.6P875 243.432 243.432 15.4249 11.37750 243.432 243.432 15.8831 17.06625 243.432 243.432 16.3284 22.75500 243.432 243.432 16.7620 28.44375 243.432 243.432 17.1846 34.13250 243.432 243.432 17.5970 39.82125 243.432 243.432	(IN) (LEMYSEC) (FPS) (FPS) (FPS) 14,4650 0. 243.432 243.432 C. 14,9526 5.68875 243.432 243.432 0. 15,4249 11.37750 243.432 243.432 0. 15,8831 17.06625 243.432 243.432 0. 16,3284 22.75500 243.432 243.432 0. 16,7620 28,44375 243.432 243.432 0. 17.1846 34.13250 243.432 243.432 0. 17.5970 39,82125 243.432 243.432 0.	(IN) (LEMYSEC) (FPS) (FPS) (FPS) 14.4650 0. 243.432 243.432 C. 242.432 14.9526 5.6P875 243.432 243.432 0. 243.432 15.4P49 11.37750 243.432 243.432 0. 243.432 15.8B31 17.06625 243.432 243.432 0. 243.432 16.32B4 22.75500 243.432 243.432 C. 243.432 16.7620 28.44375 243.432 243.432 0. 243.432 17.1846 34.13250 243.432 243.432 0. 242.432 17.5970 39.82125 243.432 243.432 0. 243.432	(IN) (LEM/SEC) (FPS) (FPS) (FPS) (FPS) 14.4650 0. 243.432 243.432 C. 243.432 0.21909 14.9526 5.6P875 243.432 243.432 0. 243.432 0.21509 15.4249 11.37750 243.432 243.432 0. 243.432 0.21509 15.8811 17.06625 243.432 243.432 0. 243.432 0.21909 16.3284 22.75500 243.432 243.432 C. 243.432 0.21909 16.7620 28.44375 243.432 243.432 0. 243.432 0.21909 16.7620 28.44375 243.432 243.432 0. 243.432 0.21909 17.1846 34.13250 243.432 243.432 0. 243.432 0.21909 17.5970 39.82125 243.432 243.432 0. 243.432 C.21909	(IN) (LEMYSEC) (FPS) (FPS) (FPS) (FPS) (FPS) 14.4650 0. 243.432 C. 242.432 0.21909 14.6960 14.9526 5.68875 243.432 243.432 0. 243.432 0.21909 14.6960 15.4849 11.37750 243.432 243.432 0. 243.432 0.21909 14.6960 16.3284 22.75500 243.432 243.432 0. 243.432 0.21909 14.6960 16.7620 28.44375 243.432 243.432 0. 243.432 0.21909 14.6960 17.1846 34.13250 243.432 243.432 0. 243.432 0.21909 14.6960 17.5970 39.82125 243.432 243.432 0. 243.432 0.21909 14.6960	(IN) (LEMYSEC) (FPS) (FPS) (FPS) (FPS) (FPS) (FPS) (PSI) (CEG R) 14.4650 0. 243.432 243.432 C. 242.432 0.21909 14.6960 518.70 14.9526 5.68875 243.432 243.432 0. 243.432 0.21909 14.6960 518.70 15.4249 11.37750 243.432 243.432 0. 243.432 0. 21909 14.6960 518.70 15.88131 17.06625 243.432 243.432 0. 243.432 0. 21909 14.6960 518.70 16.3284 22.75500 243.432 243.432 0. 243.432 0.21909 14.6960 518.70 16.7620 28.44375 243.432 243.432 0. 243.432 0.21909 14.6960 518.70 17.1846 34.13250 243.432 243.432 0. 243.432 0.21909 14.6960 518.70 17.1876 34.13250 243.432 243.432 0. 243.432 0. 21909 14.6960 518.70 17.1876 34.13250 243.432 243.432 0. 243.432 0. 21909 14.6960 518.70	(IN) (LEP/SEC) (FPS) (FPS) (FPS) (FPS) (FPS) (PS) (PS) (PS) (PS) (OEG) (

			STREAMLINE	
STREAML INE	STATIC	STATIC	SLCPE	STREAPLINE
NUMBER	PRESSURE	TEMPERATURE	ANGLE	CURVATURE
	(PS1)	(DEG R)	(DEG)	(PER IN)
1	14.2127	513.77	C.	0.
2	14.2127	513.77	C.	с.
3	14.2127	513.77	C.	0.
4	14.2121	513.77	0.	0.
5	14.7127	513.77	Ω•	Q.
6	14.2121	513477	0.	٤.
ž	14.2127	513.77	0.	0.
b	14.2121	513.77	0.	0.
ğ	14.2127	51 3.77	u.	0.

** STATOR EXIT - RCTOR INLET 1 **

STREAML INE NUMBER	RACIAL PGSITION ([N)	MASS-FLCW FUNCTION (LBM/SEC)	PEXICIONAL VELCCITY (FPS)	AXIAL VELOCITY (FPS)	WHIRL VELOCITY (FPS)	ABSCLLTE VELOCITY (FPS)	ABSCLLTE Mach Number	ABSCLUTE TCTAL PRESSURF (PS1)	ABSOLLTE TOTAL TEPPERATURE (CEG R)	ABSOLUTE : FLOW ANGLE (DEG)	•
1 .	14.4650	0.	359.289	359.289	E34.260	908.238	C. 87348	14.2523	518.70	66.700	4
2 3 4 5 6 7 8	14.9410 15.4050 15.8584 16.3023 16.7377 17.1653 17.5859	5.68853 11.37708 17.06564 22.75422 28.44282 34.13143 39.62005	350.004 341.460 333.556 326.208 319.349 312.922 306.881	35C.004 341.460 333.556 326.208 319.349 312.922 3C0.681	812.699 792.861 774.508 757.447 741.520 726.597 712.569	884.663 663.264 843.281 824.705 807.364 791.116 775.841	C-84761 O-824C7 C-8C751 C-78764 C-76424 O-74712 C-73114	14.2689 14.2841 14.2575 14.3107 14.3225 14.3234 14.3435	518.70 518.70 518.70 518.70 518.70 518.70	66.700 66.700 66.700 66.700 66.700	* ····
9	18.0000	45.50869	301.184	301.184	699.341	761.439	0.71616	14.3529	518.70	66.700	
STREAMLINE NUMBER	STATIC PRESSURF (PSI)	STATIC TEMPFHATURE (DEG R)	STREAMLINE SLOPE ANGLE (CEG)	STREAMLINE CUHVATURE (PER IN)	BLACE VELOCITY (FPS)	RELATIVE VELOCITY (FPS)	RELATIVE PACH Number	RELATIVE TCTAL PRESSURE (PSI)	RELATIVE TOTAL TEMPERATURE (CFG A)	RELATIVE FLOW ANGLE (DEG)	•
1 2 3 4 5 6 7 8	8.6702 8.9191 9.1470 9.3566 9.5502 9.7297 9.8966 10.0524 10.1981	450.04 453.55 456.69 459.53 462.10 464.46 466.67 468.61 470.45	0. 0. 0. 0. 0. 0.	G. C. O. C. O.	588.236 607.591 626.461 644.899 662.951 680.657 698.648 715.151	435.450 405.674 375.648 357.852 335.619 325.097 314.222 306.691 302.548	C.41874 C.38860 C.36760 O.34755 C.32230 G.30773 O.29675 C.28521 C.28493	9.781R 9.898C 10.0169 10.1384 10.2628 10.3900 10.5201 10.6533	465.E2 467.24 468.69 470.18 471.70 473.25 474.84 476.45	30.371 25.981 21.235 16.155 10.790 5.213 -0.482	4 • • • • • • • • • • • • • • • • • • •
				**	STACE EXIT	. ••					
STREAMLINE NUMBER	RADIAL POSITION (IN)	MASS-FLEW FUNCTION (LBM/SEC)	MERICIONAL VILOCITY (FPS)	AXIAL VELCCITY (FPS)	WHIRL VELOCITY (FPS)	ABSCLLTE VELOCITY (FPS)	ABSOLUTE MACH NUMBER	ABSCLUTE TCT PL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSCLUTE FLOW ANGLE (DEG)	•
1 2 3 4 5 6 7 8	14.4650 14.9396 15.4002 15.8498 16.2908 16.7250 17.1538 17.5784 18.0000	0. 5.68869 11.37734 17.06609 22.75482 28.44361 34.13243 39.82128 45.51007	435.073 435.111 433.083 429.609 425.072 419.710 413.666 407.028 399.835	435.G73 435.111 433.C83 429.609 425.072 419.71C 413.666 407.C28 399.835	5.032 4.605 3.986 3.211 2.213 1.314 C.734 -C.911 -2.109	435.102 435.136 433.107 425.621 425.679 415.712 413.666 407.629 395.841	0.4322C C.43751 0.43069 0.42737 0.42296 C.41770 0.41173 0.40517 0.39804	7.6243 7.6257 7.6176 7.6030 7.5837 7.5610 7.5358 7.5085 7.4795	437.52 436.49 436.45 435.92 435.39 434.85 434.78 433.78	0.606 0.527 C.428 0.312 0.179 0.032	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
STREAMLINE NUMBER	STATIC PRESSURE (PSI)	STATIC TEMPERATURE (DEG R)	STREAMLINE SLOFE ANGLE (DEG)	STREAMLINE CURVATURE (PER IN)	BLADE Velocity (FPS)	RELATIVE VELCCITY (FPS)	RELATIVE MACH NUPBER	RELATIVE TCTAL PRESSURE (PSI)	RELATIVE TCTAL TEMPERATURE (DEG R)	RELATIVE FLOW ANGLE (DEG)	•
i 2 3	6.7058 6.7059 6.7058	471.77 421.23 420.84	0. 0. 0.	0. C. O.	586.236 607.537 626.266	727.609 743.538 758.151	C.72276 O.739C5 C.75392	9.4949 9.6390 9.7748	465.82 467.24 468.67	-53.277 -54.184 -55.164	•
4 5 6 7 8	6.7058 6.7058 6.7058 6.7058 6.7058	420.56 420.35 420.19 420.08 420.00	0. 0. 0. 0.	0 • 0 • 0 •	644.551 662.486 680.143 697.580 714.848	771.533 785.185 758.101 81C.809 823.397	0.76789 0.78127 0.79427 C.80702 0.81963	9.9059 10.0250 10.1638 10.2934 10.4249	470 • 14 471 • 65 473 • 20 474 • 78 476 • 41 478 • 09		
	STREAMLINE NUMBER 1 2 3 4 5 6 7 8 9 STREAMLINE NUMBER 1 2 3 4 5 6 7 8 9 STREAMLINE NUMBER 1 2 3 4 5 6 7 8 9	NUMBER PGSITICN (IN) 1 14.4650 2 14.9410 3 15.4050 4 15.8584 5 16.3023 6 16.7377 7 17.1653 8 17.5859 9 18.0000 STREAMLINE PRESSUR- (PSI) 1 8.6702 2 8.9191 3 9.1470 4 9.3566 5 9.5502 6 9.7727 7 9.8966 10.0524 9 10.1981 STREAMLINE RADIAL POSITION (IN) 1 14.4650 14.9396 10.0524 9 10.1981 STREAMLINE RADIAL POSITION (IN) 1 14.4650 14.9396 15.4002 4 15.8498 5 16.2908 6 16.7250 7 17.1558 8 17.5784 9 18.0000 STREAMLINE STATIC PRESSURE (PSI) 1 6.7058 6 1.7058 6 6.7058 6 6.7058 6 6.7058 6 6.7058 6 6.7058 6 6.7058 6 6.7058 6 6.7058	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	STREAMLINE NAME PASS-FLC PE-IDITION AXIAL SHIRL ABSCLLTE PACH NUMBER PASS-FLC PACH PACH	STREAMLINE RACIAL PASS-FLEW FF-ILIDWAL MAILL No-FRI MASCALUTE PACH PRESSURI FF-ILIDWAL MAILE MAILE MAILE PACH PRESSURI FF-ILIDWAL MAILE PACH PRESSURI FF-ILIDWAL MAILE PACH PRESSURI FF-ILIDWAL MAILE PACH PRESSURI FF-ILIDWAL PACH P	STREAM No. PASS-TEUN P	STREAMLINE PASSILLO TUDES PELCETY VELOCITY VELOCITY VELOCITY VELOCITY VELOCITY NOT THE PROPERTY PASSILLO TO THE PASSILLO TO THE PROPERTY PASSILLO TO THE PASSIL

** STAGE 1 PERFORMANCE **

STREAMLINE NUMHER	STATOR REAGTION	RC TOR HC AGT TCN	STATOR PRESSURE LOSS CUFFFICIENT	ROTOR PRESSURE LCSS CCEFFICIENT	STATER BLADE REW EFFICIENCY	ROTCR BLADE RCW EFFICIENCY	ROTOR ISENTACPIO EFFICIENCY	STACE ISENTROPIC FFFICIENCY
1	0.26800	0.59847	C.C7949	C-10286	C-54593	0.92501	0.95635	C.91555
2	0.27511	0.54560	C.C7984	C.08815	C.54482	0.93547	0.96127	0.92181
3	0.28199	0.50102	0.08019	C.C7840	C.94378	C.94259	0.96457	0.92648
4	0.28867	C.46358	0.08056	C.07178	0.94279	C.94754	C.96677	C.93CC2
5	0.29517	G.43253	C. C8094	C.C6724	C.54185	C.95104	15400.0	C.93275
6	0.30151	C.40734	0.08133	C.06412	C.54C96	0.95354	0.96911	C.93489
7	0.30771	0.38754	0.08173	C.06201	C.94010	0.95532	0.46961	0.93657
8	0.31376	0.37271	0.08215	C.06C66	C. 53526	0.95658	C.96979	0.93788
9	0.31970	C.36241	C.08258	C.C5990	C.53845	0.95742	0.96973	C.93887

* MASS-AVERAGED QUANTITIES .

STATCR BLACE-ROW EFFICIENCY = C.54197

RCTOR BLADE-ROW EFFICIENCY = C.54791

15.556 BTL PER LBF C.93102 C.79996 Q.59158

STAGE TOTAL EFFICIENCY =
STAGE STATIC EFFICIENCY =
STAGE BLADE- TO JET-SPEEC RATIO =

*** SPOCL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) ***.

15.596 BTL PER LBP 1287.50 HP 1.54C47 2.19152 C.531C2 C.79596 , C.59158

SPOOL WCRK =
SPCOL TOTAL TO TOTAL PRESSURE RATIO =
SPOOL TOTAL TO STATIC PRESSURE RATIO =
SPOOL TOTAL EFFICIENCY =
SPCOL STATIC EFFICIENCY =
SPCOL STATIC EFFICIENCY =

```
** PROGRAM TO - AERODYNAMIC CALCULATIONS FOR THE DESIGN OF AXIAL TURBINES **
  HIGHLY LOADED SINGLE STAGE DESIGNS - HUB/TIP RATIO - .61..70,.76 RESP.
                               *** GENERAL INPUT DATA ***
      NUMBER OF SETS OF ANALYSIS VARIABLES = NUMBER OF STREAMLINES •
                                                          53.35000 LBF FT/LBM DEG R
45.51000 LBM/SEC
                                 GAS CONSTANT = INLET MASS FLOW =
                           . TABULAR INLET SPECIFICATIONS .
                                                                ABSOLUTE
FLOW ANGLE
(DEG)
               RADIAL
COORD INATE
                                TOTAL
TEMPERATURE
                                                 TOTAL
PRESSURE
                   (TM)
                                   IDEG RI
                                                    (PSI)
                                                                     ٥.
                 10-0000
                                   518.70
                                                  14.6960
                                *** SPOOL INPUT DATA ***
                               .. DESIGN REQUIREMENTS ..
                            ROTATIVE SPEED -
POWER OUTPUT -
                                                     4660.0 RPM
                                                    1287.50 HP
                          ** SET 3 OF ANALYSIS VARIABLES **
                                  NUMBER OF STAGES = 1
                                 • POWER-GUTPUT SPLIT •
                                               FRACTION OF SPOOL POWER OUTPUT
                            STAGE NUMBER
                                                     1.CC000.
                           ■ SPECIFIC-HEAT SPECIFICATION ■
                   DESIGN STATION NUMBER
                                                    SPECIFIC HEAT
                                                   (BTU/LBM DEG R)
                                                        C.24COC
                                                        0.24000
                               . ANNULUS SPECIFICATION .
                           AXIAL POSITION
                                                    HUB RADIUS
                                                                      , CASING RADIUS
    STATION NUMBER
                                                     12.549C
12.5490
12.5490
12.549C
12.549C
                                                                            16.5000
                                1.0000
2.0000
3.0000
4.0000
                                                                            16.5000
16.5000
16.5000
16.5000
```

						61
			CONTRACTOR CONTRACTOR CONTRACTOR			
	+ BLA	DE-ROW-EXIT CON	DITIONS +			
	STATOR 1	RADIAL POSITION (IN)	HIRL ANGLE (DEG)			To be described.
		13.0000	66.900			
	ROTOR 1	STREAMLINE NUMBER	NONDIMENSIONA POWER OUTPUT FUNCTION			The second secon
		1 2 3 4	C. C.12162 O.24420 O.36775	**	• · · ·	er e va e a green een roomse gegen een een een een een een een een
		5 6 7 8	0.49227 C.61775 O.74420 O.67162	· · · · · · · · · · · · · · · · · · ·		
	• BASIC	INTERNAL LOSS C	ORRELATION +			
TANGINLET ANGLE) + TANGEXIT ANGLE)		10.02999999 + 0	.15725499 * (V	RATIO) ** 3.60)	IF (V RATIO) .L1	. 0.60000000
0.6'000000 + 0.80000000 + CUSIEXIT AN	GLE)	10.05500000 + 0	.15000000 +((V	RAT103-0.40033	IF IV RATIOS .GI	. 0.60000000 6
THE PRESSURE-LOSS COEFF	ICIENT COMPUT	ED IN THIS MANN	ER MAY NOT EXCE	ED A LIMIT OF	1.00000000	The second secon
			** **			the second second second
The second secon	•				•	- 11 %
	•					

*** OUTPUT OF SPOOL DESIGN ANALYSIS (SET 3 OF ANALYSIS VARIABLES) ***

** STATOR INLET 1 **

STRENMLINE NUMBER	RADTAL POSITION . (1N)	MASS-FLOW FUNCTION (LBP/SLC)	MERIDIONAL VELOCITY (FPS)	AXTAL VELOCITY (FPS)	WITEL VELOCITY (FPS)	ABSOLUTE VELOCITY (FPS)	ABSOLUTE Mach Number	ABSOLUTE TOTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW ANGLE (DEG)	:
1 2 3 4 5 6 7 8	12.5490 13.1082 13.6444 14.1604 14.6582 15.1397 15.6063 16.0594 16.5000	0. 5.68875 11.37750 17.06625 22.75500 28.44375 34.13250 39.82125 45.51000	243.412 243.412 243.412 243.412 243.412 243.412 243.412 243.412 243.412	243.412 243.412 243.412 243.412 243.412 244.412 244.412 243.412 243.412	0. 0. 0. 0. 0. 0.	243.412 243.412 243.412 243.412 243.412 243.412 243.412 243.412 243.412	0.21907 0.21907 0.21907 0.21907 0.21907 0.21907 0.21907 0.21907	14.6960 14.6960 14.6960 14.6960 14.6960 14.6960 14.6960 14.6960	518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70	0. 0. 0. 0. 0. 0.	
STREAML THE NUMBER	STATIC PRESSURE (PSI)	STATIC TEMPEHATURE (DEG R)	STREAMLINE SLUPE ANGLE (DEG)	SIREAMLINE CURVATURE (PER IN)				-			
1 2 3 4 5 6 7 8	14.2128 14.2128 14.2128 14.2128 14.2128 14.2128 14.2128 14.2128 14.2128	513.77 513.77 513.77 513.77 513.77 513.77 513.77 513.77	0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.							

ABSOLUTE FLOW \$ ANGLE \$ (DEG) \$

66.900 +

** STATOR EXIT - ROTOR INLET 1 **

WHIRL VELOCITY (FPS)

884.083

ABSOLUTE VELOCITY (FPS)

961.146

AXIAL VELOCITY (FPS)

177.091

RADIAL PUSITION (IN)

12-5490

STREAMLINE NUMBER

ı

MASS-FLOW MERIDIONAL FUNCTION VFLOGITY (LBM/SEC) (FPS)

177.093

0.

ABSOLUTE MACH NUMBER

0. 932AL

ABSOLUTE TOTAL PRESSURE (PS.1)

14.2086

ABSOLUTE TOTAL TEMPERATURE (DEG A)

914.70

2 3 4 5 6 7	16.0463	39.82014	364.273 352.807 342.451 333.021 324.375 316.401 309.009	364.273 352.807 342.451 333-021 324.375 316.401 309.009	854.025 827.144 802.865 780.757 760.487 741.791 724.461	787.610	0.74344	14.2324 14.2534 14.2723 14.2892 14.3046 14.3185 14.3313	518.70 518.70 518.70 518.70 518.70 518.70 518.70	66.900 + 66.
9 STREAMLINE	16.5000 	45.50882	302.126 STREAMLINE SLOPE	302.126	708.324 BLADE	770.067	0.72512	RELATIVE	518.70 RELATIVE TOTAL	66.900 ♦ RELATIVE ♦ FLOW
NUMBER	PRESSURE (PSI)	TEMPERATURE (DEG R)	ANGLE (DEG)	CURVATURE (PER IN)	VELOCITY (FPS)	VELOCITY (FPS)	NUMBER0.51529	PRESSURE (PSI)	TEMPERATURE (DEG R)	ANGLE +
2 3 4 5 6			0. 0. 0. 0.		532-514 553-922 574-662 594-827 614-489	485.864 446.232	0.46882 0.42846 0.39344 0.36328 0.33768	9.8261 9.9422 10.0611 10.1829	466.61 467.98 469.40 470.85	44.746
	9.7360 9.9294 10.1079	464-58 467-08 469-35	0.	0.			0.33766 0.31645 0.29948 0.28666	10.3077 10.4357 10.5668 10.7013	472.35 473.88 475.46 477.07	24.232
					STAGE EXIT 1			<u>.</u>		
		a a second		-			•			
STIES MLINE NUMBER	RADIAL POSITION (IN)	FUNCTION	MERIDIONAL VELOCITY (FPS)	AXIAL VELOCITY (FPS)	WHIRL VELOCITY (FPS)		AB SOLUTE MACH NUMBER	ABSOLUTE TOTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE + FLOW ANGLE + (DEG) +
	12.5490 13.1074 13.6369 14.1439	0. 5.68878 11.37755 17.06628	427.979 432.928 435.971 435.948	427.979 432.928 435.971 435.948	-66.567 -64.211 -62.579 -61.496	433.125 437.663 440.440 440.264	0.42994 0.43495 0.43815 0.43830	7.5027 7.5258 7.5415 7.5436	437.96 437.32 436.67 436.03	-8.841
5 6 7 8 9	14.6343 15.1123 15.5811 16.0430 16.5000	22.75500 28.44372 34.13248 39.82125 45.51000	433.142 428.457 422.399 415.262 407.206	433.142 428.457 422.399 415.262 407.206	-60.833 -60.496 -60.417 -60.545 -60.838	437.393 432.707 426.698 419.652 411.726	0.43567 0.43116 0.42528 0.41833 0.41048	7.5415 7.5436 7.5333 7.5147 7.4903 7.4618 7.4301	435.39 434.74 434.10 433.45 432.81	-7.995 -8.037
STREAML INE	STATIC	STATIC	STREAMLINE SLOPE	STREAML INE	BL ADE	RELATIVE	RELATIVE MACH	RELATIVE TOTAL	RELATIVE TOTAL	RELATIVE + FLOW +
NUMBER	PRESSURE (PSI)	TEMPERATURE	ANGLE (DEG)	CURVATURE (PER IN)	VELOCITY (FPS)	VELOCITY (FPS)	NUMBER	PRESSURE (PSI)	TEMPERATURE (DEG R)	ANGLE (DEG) +
1 2 3	6.6076 6.6086 6.6099	422.35 421.38 420.53	0. 0. 0.	0. 0. 0.	510.320 533.026 554.559	718.306 737.644 755.600	0.71303 0.73307 0.75167	9.2732 9.4465 9.6143	465.29 466.66 468.04	-53.429
	6.6112	419.90	0.	0.	575.178	771.625	0.76818	9.7688	469.44	-55.600
5 6 7 8 9	6.6123 6.6134 6.6144 6.6154 6.6163	419.47 419.16 413.95 418.80 418.70	0. 0. 0. 0.	0. 0. 0. 0.	595.120 614.560 633.624 652.409 670.992	786.C57 799.547 812.474 825.073 837.491	0. 782 96 0. 79668 0. 80977 0. 8224 7 0. 834 95	9.9115 10.0478 10.1811 10.3138 10.4475	470.88 472.36 473.88 475.44 477.07	-56.562
							war en ar	· a · · · · · ·		i I

STAGE 1 PERFORMANCE **

				****	ROTOR	STATOR			
•	STAGE	ROTOR	ROTOR	STATOR	PRESSURE	PRESSURE		5	
	ISENTROPIC	ISENTROPIC	BLADE ROW	BLADE ROW	LOSS	LOSS	ROTOR	STATOR	STHEAMLINE
	EPPIC TENCY	BFF IC I PNCY	EFFICITNCY	EFF 1G1 FNGY	COPPFIGIENT	GOLFF IG IPNT	MEACT TON	HI ACTION	NUMBER
	0.89079	0.93347	0.88555	0.94777	0.16484	0.07984	0.73916	0.25325	ı
	0.90164	0.94281	0.90493	0.94625	0.13494	0.08022	7.69667	0.26717	,
	0.91135	0.95109	0.92123	0.944H7	0.11060	0.04062	0.59057	0.27069	. 1
	0.91886	0.95714	0.93288	0.94360	0.09373	0.08103	0.53332	0.27887	4
	0.92430	0.96109	0.94055	0.94241	0.08292	0.08146	0.48522	0.28677	5
	0.92833	0.96365	0.94572	0.94129	0.07585	0.08191	0.44490	0.29441	6
	0.93136	0.96528	. 0.94924	0.94023	0.07118	0.08237	0.41152	0.30183	1
	0.93365	0.96624	0.95165	0.93921	0.06814	0.08285	0.38454	0.30905	8
	0.93539	0.96671	0.95326	0.93824	0.06626	0.08335	0.36349	0.31609	9

• MASS-AVERAGED QUANTITIES •

STATOR	BLADE-F IS	EFFICIENCY	•	0.94261

ROTOR BLADE-RON EFFICIENCY . 0.93320

19.996 BTU PER LBM 0.92037 0.78738 0.52634 STAGE TOTAL EFFICIENCY STAGE STAT C EFFICIENCY STAGE SLADE- TO JET-SPEED RATIO -

SPOOL PERFORMANCE SUPMARY (MASS-AVERAGED QUANTITIES)

19.996 BTU PER LBM 1287.50 HP 1.95694 2.22258 0.92037 0.78738 0.92634

SPOOL WORK =
SPOOL TOTAL- TO TOTAL-PRESSURE RATIO =
SPOOL TOTAL- TO STATIC-PRESSURE RATIO =
SPOOL TOTAL EFFICIENCY =
SPOOL STATIC EFFICIENCY =
SPOOL STATIC =

```
** PROGRAM TO - AERODYNAMIC CALCULATIONS FOR THE DESIGN OF AXIAL TURBINES **
  HIGHLY LOADED SINGLE STAGE DESIGNS - HUB/TIP RATIO - .61..70..76 RESP.
                                 *** GENERAL INPUT DATA ***
        NUMBER OF SPOOLS =
NUMBER OF SETS OF ANALYSIS VARIABLES =
NUMBER OF STREAMLINES =
                                    GAS CONSTANT = INLET MASS FLOW =
                                                               53.35000 LBF FT/LBM DEG R
45.51000 LBM/SEC
                              . TABULAR INLET SPECIFICATIONS .
                 RADIAL
COORDINATE
(IN)
                                   TOTAL
TEMPERATURE
(DEG R)
                                                                      ABSOLUTE
FLOW ANGLE
(DEG)
                                                      TOTAL
PRESSURE
(PSI)
                                       516.70
                   10.0000
                                                       14.6960
                                                                            ٥.
                                   *** SPOOL INPUT DATA ***
                                  ** DESIGN REQUIREMENTS **
                               ROTATIVE SPEED . POWER OUTPUT .
                                                         4660.0 RPM
1287.50 HP
                             .. SET 2 DF ANALYSIS VARIABLES ..
                                     . POWER-OUTPUT SPLIT .
                                                   FRACTION OF
                               STAGE NUMBER
                              . SPECIFIC-HEAT SPECIFICATION .
                      DESIGN STATION NUMBER
                                                       SPECIFIC HEAT (BTU/LBM DEG R)
                                                             C.24000
C.24000
C.24000
                                  • ANNULUS SPECIFICATION •
                                                                               CASING RADIUS
                              AXIAL POSITION
                                                         HUB RADIUS
     STATION NUMBER
                                     (IN)
                                                          10.4990
10.4990
10.4990
10.4990
10.4990
                                                                                   15.0000
15.0000
15.0000
15.0000
                                   0.
1.0000
2.0000
3.0000
4.0000
```

RATIO) .LT. 0.60000000 RATIOJ .GI. 0.60000000
RATION .GT. 0.60000000
· · · · · · · · · · · · · · · · · · ·
v +
ABSOLUTE ABSOLUTE
TEMPERATURE ANGLE [DEG R) [DEG]
518.70 0. 518.70 0.
518.70 0. 518.70 0.
518.70 0. 518.70 0. 518.70 0.
518.70 0. 518.70 0.

** STATOR EXIT - ROTOR INLET 1 **

STREAMLINE NUMBER	RADIAL POSETION (IN)	MASS-FLOW FUNCTION (LBM/SEC)	MERIDIONAL VELOCITY (FPS)	AXIAL VELOCITY (FPS)	WHIRL VELOCITY (FPS)	ABSCLUTE VELOCITY (FPS)	ABSOLUTE MACH Number	ABSOLUTE TOTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW ANGLE (DEG)
1	10.4990	0.	407.347	407.347	964.326	1046.832	1.03285	14.1392	518.70	67.100
2	11-1597	5.68834	387.806	387.806	918.066	996.614	0.97362	14.1764	518.70	67.100
3 4	11.7643	11.37676	371.199 356.790	371.199 356.790	878.752 844.640	953.936 916.906	0.92461 0.88300	14.2080 14.2352	51 8 • 70 51 8 • 70	67.100
5 6	12.9136 13.4576	22.75374 28.44229	344.089 332.754	344.089 332.754	814.573 787.739	884.266 855.136	0.84696 0.81528	14.2589	518.70 518.70	67.100 67.100
7 8	13.9852 14.4987	34.13088 39.81950	322.536 313.248	322.536 313.248	763.549 741.561	828.877 805.007	0.78709 0.76175	14.2983	518.70 518.70	67.100 67.100
9	15.0000	45.50814	304.745	304.745	721.433	783.158	0.73878	14.3298	518.70	67.100
			STREAMLINE				RELATIVE	RELATIVE	RELATIVE	RELATIVE
TREAMLINE NUMBER	STATIC PRESSURE (PSI)	STATIC TEMPERATURE (DEG R)	SLOPE ANGLE (DEG)	STREAMLINE CURVATURE (PER IN)	BLADE VELOCITY (FPS)	RELATIVE VELCCITY (FPS)	MACH NUMBER	TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG R)	FLOW Angle (Deg)
1 2	7.1859 7.7213	. 427.51 436.05	0.	0. 0.	426.954 453.416	674.315 <u></u>	0.66531	9.6697 9.7816	465.35 466.53	52.837 50.151
3	8.1775 8.5725	442.98	0. 0.	0.	478.408 502.247	545.952 494.502	0.52917	9.8956	457.78	47.163
5	8.9189	453.63	0.	0.	525.147	449.627	0.43066	10.0121	469.09 470.46	43.823
7	9.2260 9.5005	457.85 461.53	0 • 0 •	0.	547.267 568.724	410.551	0.39141	10.2538	471.88 473.35	35.855 . 31.134
9	9.7477 9.9718	464.78 467.66	0. 0.	0. 0.	589.608 609.992	348.158 324.482	0.32945 0.30610	10.5086 10.6412	474.86 476.42	25.877 20.087
	. • .			••	STAGE EXIT 1	••				
TREAML INE	RADIAL	MASS-FLOW	MERIDIONAL	AXIAL	WHIRL	AB SOL UTE	AB SOLUTE	ABSOLUTE	ABSOLUTE TOTAL	ABSOLUTE FLOW
NUMBER	POSITION (IN)	FUNCTION (LBM/SEC)	VELOC ITY	VELOCITY (FPS)	VELOCITY (FPS)	VEL CC I TY	NUMBER	PRESSURE (PSI)	TEMPERATURE	ANGLE (DEG)
l 2	10.4990 11.1986	0. 5.68874	412.181 429.328	412.181	-165.681 -155.324	444.233	0.44116	7.2697 7.3390	438.41 437.65	-21.898 -19.889
3	11.8333	11.37748	440.286	440.286	-147.829	464.441	0.46290	7.3883	436.90	-18.560
;	12.4215 12.9750	17.06622 22.75496	447.097 450.365	447.097 450.365	-142.262 -138.063	469.184 471.052	0.46825	7.4231 7.4432	436.14 435.39	-17.651 -17.043
6 7	13.5032 14.0138	28.44371 34.13246	448.987 444.584	448.987 444.584	-134.859 -132.393	468.803 463.878	0.46870 0.46399	7.4424 7.4276	434.63 433.87	-16.718 -16.583
. 8	14.5115 15.0000	39.82122 45.50997	438.136 430.148	438.136 430.148	-130.491 -129.029	457.155 449.084	0.45739 0.44940	7.4037 7.3735	433.12 432.36	-16.585 -16.697
9			•							
9								,		
TREAM! INF	STATES	STATIC	STREAMLINE	STREAM INF	BL ADS	RFLATIVE	RELATIVE	RELATIVE	RELATIVE .	RELATIVE
TREAMLINE NUMBER	STATIC PRESSURE (PSI)	STATIC TEMPERATURE (DEG R)	SLOPE	STREAML INE CURVATURE (PER IN)	BLADE VELOCITY (FPS)	RELATIVE VELOCITY (FPS)	MACH NUMBER	RELATIVE TOTAL PRESSURE (PSI)	TOTAL TEMPERATURE (DEG R)	RELATIVE FLOW ANGLE (DEG)
NUMBER 1 2	PRESSURE (PSI) 6.3603 6.3702	TEMPERATURE (DEG R) 421-99 420-31	SLOPE ANGLE (DEG) U. O.	CURVATURE (PER IN)	VELOCITY (FPS) 426.954 455.402	VELOCITY (FPS) 721.879 746.531	MACH NUMBER 0.71688 0.74284	TOTAL PRESSURE (PSI) 8.9574 9.1891	TOTAL TEMPERATURE (DEG R) 465.35 466.68	FLOW ANGLE (DEG) -55.181 -54.894
NUMBER 1	PRESSURE (PSI) 6.3603	TEMPERATURE (DEG R) 421.99	SLOPE ANGLE (DEG)	CURVATURE (PER IN)	VELOCITY (FPS) 426.954	VELOCITY (FPS) 721.879	MACH NUMBER 0.71688	TOTAL PRESSURE (PSI) 8.9574	TOTAL TEMPERATURE (DEG R) 465.35	FLOW ANGLE (DEG)
NUMBER 1 2	PRESSURE (PSI) 6-3603 6-3702 6-3792	TEMPERATURE (DEG R) 421.99 420.31 418.95	SLOPE ANGLE (DEG) U. O.	CURVATURE (PER IN) 0. 0.	VELOCITY (FPS) 426.954 455.402 481.214	VELOCITY (FPS) 721.879 746.531 767.820	MACH NUMBER 0.71688 0.74284 0.76527	TOTAL PRESSURE (PSI) 8.9574 9.1891 9.3997	TOTAL TEMPERATURE (DEG R) 465.35 466.68 468.00	FLOW ANGLE (DEG) -55.181 -54.894 -55.011
1 2 3	PRESSURE (PSI) 6-3603 6-3702 6-3792	TEMPERATURE (DEG R) 421.99 420.31 418.95	SLOPE ANGLE (DEG) U- O- O-	CURVATURE (PER IN) 0. 0. 0. 0.	VELOCITY (FPS) 426.954 455.402 481.214	VELOCITY (FPS) 721.879 746.531 767.820	MACH NUMBER 0.71688 0.74284 0.76527	TOTAL PRESSURE (PSI) 8.9574 9.1891 9.3997	TOTAL TEMPERATURE (DEG R) 465.35 466.68 468.00	FLOW ANGLE (DEG) -55.181 -54.894 -55.011
NUMBER 1 2	PRESSURE (PS1) 6-3603 6-3702 6-3792	TEMPERATURE (DEG R) 421.99 420.31 418.95	SLOPE ANGLE (DEG) U. O.	CURVATURE (PER IN) O. O. O.	VELOCITY (FPS) 426.954 455.402 481.214	VELOCITY (FPS) 721.879 746.531 767.820	MACH NUMBER 0.71688 0.74284 0.76527	TOTAL PRESSURE (PSI) 8.9574 9.1891 9.3997	TOTAL TEMPERATURE (DEG R) 465.35 466.68 468.00	FLOW ANGLE (DEG) -55.181 -54.894 -55.011

STREAMLINE	•			** STAG	E 1 PERFORMA	NCE **				
STATOR ROTOR ROTOR ROTOR PRESSURE PRESSURE STATOR ROTOR ROTO	 	 		A 19 W.						
STREAMLINE	 			STATOR	BO TOP					
NUMBER REACTION REACTION COEFFICIENT COEFFICIENT SPFICIENCY FFFICIENCY FFFICIENCY FFFICIENCY 1 0.27253 0.301071 0.00009 0.27431 0.49479 0.89409 0.99421 0.49487 2 0.24422 0.91071 0.00009 0.12411 0.49479 0.89409 0.99138 0.89485 3 0.25917 0.71100 0.00009 0.16490 0.49482 0.89409 0.99259 0.88426 4 0.26948 0.42852 0.00138 0.13533 0.99490 0.99735 0.93777 0.99797 5 0.27527 0.59942 0.08186 0.10936 0.99750 0.99235 0.9777 0.99946 6 0.24869 0.49138 0.082217 0.09213 0.99275 0.49200 0.99215 0.99260 0.90737 7 0.279317 0.49339 0.082217 0.09315 0.49470 0.99215 0.99260 0.99231 0.99231 0				PRESSURE	PRESSURE					
1 0.22253 0.93411 0.08007 0.27423 0.95108 0.82618 0.89442 0.84987 2 0.24424 0.81071 0.08049 0.21411 0.44879 0.55969 0.91133 0.68645 3 0.25514 0.71100 0.08049 0.21411 0.44879 0.55969 0.91133 0.68645 3 0.27517 0.7100 0.08049 0.15133 0.044508 0.30777 0.097977 5 0.27527 0.55942 0.08186 0.10936 0.49450 0.92435 0.94777 0.90796 6 0.26465 0.50178 0.08237 0.09327 0.94250 0.54226 0.95915 0.94777 0.90796 7 0.27527 0.55942 0.08186 0.10936 0.49450 0.92435 0.94777 0.90796 7 0.27367 0.45335 0.06289 0.08310 0.45071 0.94226 0.95981 0.95237 0.91757 9 0.10018 0.4122 0.08184 0.07535 0.93956 0.93951 0.95820 0.92162 0.92337 0.93108 0.45711 0.99428 0.95881 0.92262 0.94891 0.96109 0.92762 0.90810 0.91801 0.91801 0.91801 0.91801 0.98278 0.93079 ***MASS-AVERAGED QUANTITIES *** ***STATOR BLADE-ROW EFFICIENCY = 0.94389 ***AASS-AVERAGED QUANTITIES *** ****STAGE BLADE-ROW EFFICIENCY = 0.94389 ***STAGE STATIC EFFICIENCY = 0.94389 ***STAGE STATIC EFFICIENCY = 0.75907 ***STAGE BLADE-TO JET-SPEED RATIO = 0.45805 ****SPOOL TOTAL TO TOTAL-PRESSURE RATIO = 0.45805 ***SPOOL TOTAL TO TOTAL-PRESSURE RATIO = 1.26852						. BLAGE ROW.	BLADE ROW.	_ISENTROPIC	IS ENTROPIC.	
2 0.24424 0.81071 0.08049 0.21411 0.94879 0.85499 0.59138 0.68685 3 0.27517 0.71104 0.08079 0.44682 0.888079 0.92559 0.88426 4 0.26548 0.462852 0.08138 0.13533 0.94508 0.90753 0.93777 0.69797 5 0.27527 0.55942 0.08138 0.103533 0.94508 0.90753 0.93777 0.69797 6 0.28367 0.40313 0.08289 0.00310 0.94501 0.94210 0.95820 0.91777 7 0.00408 0.41289 0.41282 0.00314 0.07650 0.94501 0.94216 0.95820 0.91777 8 0.30238 0.41282 0.00314 0.07650 0.99820 0.94601 0.94216 0.95820 0.91777 9 0.31081 0.37947 0.08402 0.07235 0.99820 0.94491 0.96278 0.93079 **MASS-AVERAGED QUANTITIES ** *********************************	NUMBER	REACTION	KENCI IUN	COEFFICIENT	CUEFFICIENT	EFFICIENCY	EFFICIENCY	EFFICIENCY	EFFICIENCY	
3 0.25517 0.71104 0.08092 0.16099 0.4662 0.880609 0.92559 0.88426 4 0.265548 0.90753 0.93777 0.89797 0.59942 0.755942 0.08186 0.10936 0.90753 0.93777 0.89797 0.69797 0.59942 0.755942 0.98180 0.90753 0.93757 0.95947 0.90946 0.26465 0.50178 0.08237 0.09325 0.45260 0.93515 0.95423 0.91757 0.45733 0.082897 0.09325 0.45620 0.93515 0.95423 0.91757 0.45333 0.08289 0.08289 0.94071 0.94216 0.99233 0.91757 0.45333 0.08289 0.08289 0.94071 0.94216 0.99234 0.92237 0.9123 0.9128 0	 1									
4. 0.225548	2									
5 0.27527 0.55942 0.08186 0.10936 0.94550 0.94570 0.94774 0.90046 6 0.28465 0.50178 0.08237 0.09325 0.44570 0.99325 0.91577 7. 0.29367 0.45333 0.91577 0.98402 0.99315 0.95423 0.91577 8 0.30236 0.41282 0.08844 0.07555 0.49480 0.9610 0.92337 0.31081 0.37947 0.08402 0.07235 0.9926 0.94091 0.96278 0.93079 0.92762 0.31081 0.37947 0.08402 0.07235 0.9926 0.94091 0.96278 0.93079 0.99278 0.93079 0.99278 0.93079 0.99278 0.93079 0.99278 0.93079 0.99278										
7	-							0.94774	0.90946	
### 0.30238 0.41282 0.08344 0.07656 0.93945 0.94680 0.96109 0.92762 9 0.31081 0.37947 0.08402 0.07235 0.93826 0.94991 0.96278 0.93079 ***MASS-AVERAGED QUANTITIES *** ***STATOR BLADE-ROW EFFICIENCY *** 0.94389 ###################################	6									
STATOR BLADE-ROW EFFICIENCY = 0.99123 ROTOR BLADE-ROW EFFICIENCY = 0.9123 STAGE WORK = 19.998 BTU PER LBM STAGE STATIC EFFICIENCY = 0.75907 STAGE STATIC EFFICIENCY = 0.75907 STAGE BLADE- TO JET-SPEED RATIO = 0.45605 **O** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) ***O SPOOL MORK = 19.998 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.2950 BTU PER LBM SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.29650 BTU PER LBM SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.98612 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.98612 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.98612 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 0.90224 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 0.90224 SPOOL TOTAL- FFICIENCY = 0.90224 SPOOL TOTAL- FFICIENCY = 0.90224	 									
*** *** *** *** *** *** *** *** *** **	9			0.08402	0.07235	0. 93 826	0.94991	0.96278	0.93079	
STATOR BLADE-ROW EFFICIENCY • 0.94389 ROTOR BLADE-ROW EFFICIENCY • 0.9123 STAGE GORK • 19.996 BTU PER LBM STAGE STATIC EFFICIENCY • 0.75907 STAGE BLADE- TO JET-SPEED RATIO • 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) **** SPOOL MORK • 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.287.50 MP SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29856 SPOOL TOTAL = TO STATIC-PRESSURE RATIO • 2.29856 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907	 	**************************************			•					
STATOR BLADE-ROW EFFICIENCY • 0.94389 ROTOR BLADE-ROW EFFICIENCY • 0.9123 STAGE GORK • 19.996 BTU PER LBM STAGE STATIC EFFICIENCY • 0.75907 STAGE BLADE- TO JET-SPEED RATIO • 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) **** SPOOL MORK • 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.287.50 MP SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29856 SPOOL TOTAL = TO STATIC-PRESSURE RATIO • 2.29856 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
STATOR BLADE-ROW EFFICIENCY • 0.94389 ROTOR BLADE-ROW EFFICIENCY • 0.9123 STAGE GORK • 19.996 BTU PER LBM STAGE STATIC EFFICIENCY • 0.75907 STAGE BLADE- TO JET-SPEED RATIO • 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) **** SPOOL MORK • 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.287.50 MP SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29856 SPOOL TOTAL = TO STATIC-PRESSURE RATIO • 2.29856 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907	 									
ROTOR BLADE-ROW EFFICIENCY = 0.91123 STACE MORK = 19.996 BTU PER LB# STAGE STATIC EFFICIENCY = 0.97020 STAGE BLADE- TO JET-SPEED RATIO = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL HORK = 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.28632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.29658 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.90224				• MASS-A	VERAGED QUAN	TITIES •				
ROTOR BLADE-ROW EFFICIENCY = 0.91123 STACE MORK = 19.996 BTU PER LB# STAGE STATIC EFFICIENCY = 0.97020 STAGE BLADE- TO JET-SPEED RATIO = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL HORK = 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.28632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.29658 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.90224	 									
STAGE MORK = 19.996 BTU PER LBH STAGE STATIC EFFICIENCY = 0.90224 STAGE BLADE- TO JET-SPEED RATID = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL MORK = 19.996 BTU PER LBH SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.287.50 HP SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.28958 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL TOTAL EFFICIENCY = 0.75907			STATO	OR BLADE-ROW	EFFICIENCY .	0.94389				
STAGE MORK = 19.996 BTU PER LBH STAGE STATIC EFFICIENCY = 0.90224 STAGE BLADE- TO JET-SPEED RATID = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL MORK = 19.996 BTU PER LBH SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.287.50 HP SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.28958 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL TOTAL EFFICIENCY = 0.75907	 		ROTO	OR BLADE-ROW	EFFICIENCY =	0.91123				
STAGE TOTAL EFFICIENCY = 0.90224 STAGE BLADE- TO JET-SPEED RATIO = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL MORK = 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE MATIO = 1.287.50 MP SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.90224										
STAGE STATIC EFFICIENCY = 0.75907 STAGE BLADE- TO JET-SPEED RATIO = 0.45605 *** SPOOL PERFORMANCE SUMMARY (MASS-AVERAGED QUANTITIES) *** SPOOL MORK = 19.996 BTU PER LBM SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 1.28756 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29856 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907										
SPOOL TOTAL TO STATIC PRESSURE RATIO = 0.45605 SPOOL TOTAL TO STATIC PRESSURE RATIO = 1.287.50 HP SPOOL TOTAL TO STATIC PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.97507 SPOOL STATIC EFFICIENCY = 0.97507	 						THE CONTRACTOR OF THE PARTY OF	manager of the state of the sta	• · · · · · · · · · · · · · · · · ·	
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907	• .	•	STAGE BLA	LDE- TO JET-S	PEED RATIO -					
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907		Mariantan marketing								
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907								. ,		
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907	 		·						a nama and and and and and and and and and an	
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907			•							
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL WORK • 19.996 BTU PER LBM SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO • 2.29858 SPOOL TOTAL EFFICIENCY • 0.90224 SPOOL STATIC EFFICIENCY • 0.75907										
SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907			*** SPOOL PI	ERFORMANCE SU	MMARY (MASS-	AVERAGED QUA	NTITIES) ***			
SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907										
SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907										
SPOOL POWER • 1287.50 MP SPOOL TOTAL- TO TOTAL-PRESSURE RATIO • 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907					Senut Huer -	10.004	TI: DED 184			
SPOOL TOTAL- TO TOTAL-PRESSURE RATIO = 1.98632 SPOOL TOTAL- TO STATIC-PRESSURE RATIO = 2.29858 SPOOL TOTAL EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907				5	POOL POWER .	1287.50 F				
SPOOL STATIC EFFICIENCY = 0.90224 SPOOL STATIC EFFICIENCY = 0.75907		SI	POOL TOTAL-	TO TOTAL-PRES	SURE RATIO .	1.98632				
SPOOL STATIC EFFICIENCY = 0.75907		SPO	DOL TOTAL- TO			2.29858 0.90224				
			:						,	
			et an o							
and the control of th							•			

** PREGRAM TO - AERECYNAMIC CALCULATIONS FOR THE CESIGN OF AXIAL TURBINES **

ALTERNATIVE ANGLE DISTRIBUTIONS FOR STAGE OF HIGHEST LOADING

*** GENERAL INPUT CATA ***

NUMBER OF SETS OF ANALYSIS VARIABLES = 2
NUMBER OF STREAMLINES = 9

GAS CONSTANT = 53.35COC LBF FT/LBP DEG R
INLET MASS FLOW = 45.51COO LBF/SEC

• TABULAR INLET SPECIFICATIONS •

RADIAL	TOTAL	TOTAL	ABSCLUTE
CCORDINATE	TEMPERATURE	PRESSURE	FLOW ANGLE
(IN)	(DEG R)	(PSI)	(DEG)
10.0000	518.70	14.6560	c.

*** SPCOL INPUT DATA ***

.. DESIGN REQUIRFMENTS ..

ROTATIVE SPEED = 4660.0 RPM POWER OUTPLT = 1287.50 HP

** SET 1 OF ANALYSIS VARIABLES **

NUMBER CF STAGES = 1

. POWER-CUTPUT SPLIT .

STAGE NUMBER SPOOL PCHER OLTPLT

1. (CCCC

. SPECIFIC-HEAT SPECIFICATION .

CESIGN	STATION NU	MBER	SPECIFIC FEAT (BTU/LBM DEG R)
	1		C.24CCC
	2		C-2400C
	3		0.24000

. ANNULUS SPECIFICATION .

STATION NUMBER	AXIAL POSITION	HUB RADIUS	CASING RADIUS
1	C.	8.215C	13.5000
•	1.0000	8.215C	13.5000
3	2.0000	8.215C	13.5CCC
Ĭ.	3.0000	8.215C	13.5000
Š	4-0000	8.2150	13.5000

. BLADE-RCW EXIT CONCITIONS .

STATOR 1	RACIAL POSITION (IN)	HIRL Angle (Deg)
	12 4444	

RO TOR 1	STREAML INE	NCNOIPENSIONAL POWER OUTPUT
MO LOK T	NUPBER	FUNCTION
	1	ç.
	2	0.11740
	3	C.23657
	4	C-35871
	5	C.48262
	6	C.60871
	7	C.73657
		C-86740
	9	1. CCCCC

. BASIC INTERNAL LOSS CORRELATION .

THE PRESSURE-LOSS CCEFFICIENT COMPUTED IN THIS PANNER MAY NOT EXCEED A LIPIT CF 1.000QQQQQ

*** CUTPUT OF SPCOL DESIGN ANALYSIS (SET 1 OF ANALYSIS VARIABLES) ***

** STATOR INLET 1 **

STREAMLINE NUMBER	RADIAL PGSITEON (IN)	PASS-FLCW FUNCTION (LBP/SLC)	MERICIONAL VELOCITY (FPS)	AX IAL VELOCITY (FPS)	WHIRL VELOCITY (FPS)	ABSCLUTE VELCCITY (FPS)	ABSOLUTE MACH Number	ABSOLUTE TCTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW Angle (Deg)	•
1	8.2150	0.	243.432	243.432	0.	243.432	0.21909	14.6960	518.70	c.	4
2	9.0461	5.68875	243.432	243.432	c.	243.432	C.21909	14.6560	518.70	0.	4
3	9.8070	11. 37750	243.432	243.432	C.	243.432	C.219C9	14.6960	518.70	٥.	
4 .	10.5130	17.06625	243.432	243.432	. C.	243.432	C.21909	14.6960	518.70	c.	4
5	11.1744	22.75500	243.432	243.432	0.	243.432	0.21509	14.6960	518.70	0.	•
6	11.7989	28.44375	243.432	243.432	· C •	243.432	C. 219C9	14.6960	518.70	0.	•
7	12.3919	34.13250	243.432	243.432	٠.	243.432	C.21909	14.6960	518.70	٥.	•
8	12.95/8	39.82125	243.432	243.432	c.	243.432	C.21909	14.6960	518.70	0.	
9	13.5000	45.51000	243.432	243-432	0-	243.432	0.21509	14.6560	518.70	0.	• "

STREAMLINE Number	STATIC PRESSURE (PSI)	STATIC TEMPERATURE (DEG R)	STREAML INE SLOPE ANGLE (DEG)	STREAML INE CURVATURE (PER IN)
1	14.2127	513.77	c.	C.
2	14.2127	513.77	0.	0.
3	14-2127	513.77	0.	0.
4	14-2127	513.77	0.	C.
5	14.2127	513.77	C.	C.
6	14.2127	513.77	0.	C.
7	14.2127	513.77	0.	0.
8	14-2127	513.77	. 0.	0.
9	14.2127.	513.77	0.	c.

** STATOR EXIT - ROTOR INLET 1 **

													_
	STREAMLINE NUMBER	RADIAL PUSITION (IN)	PASS-FLOW FUNCTION (LBP/SEC)	PERICIONAL VELOCITY (FPS)	AXIAL VELCCITY (FPS)	WHIRL VELOCITY (FPS)	ABSCLUTE VELCCITY (FPS)	ABSCLUTE MACH NUMBER	ABSCLUTE TCTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW Angle (Deg)	* * *	-
	1	8-2150	0.	467.445	467.445	1109.837	1204.260	1.23140	14.0222	518.70	67.160	*	
i.													
1	3	9.0576 9.8114	5.68807 11.37625	431.323	431.323	1024.075 959.076	1111.2C2 1C4C.673	1.11148	14.0296	518.70 518.70	67-160 67-160	•	
į	4 5 6	10.5064. 11.1588 11.7787	17-06451 22-75284 28-44121	381.961 363.642 347.984	381.961 363.642 347.984	906.875 863.383	984.031 936.838	C.95905 C.9053C	14.1839 14.2188	518.70 518.70	67.160 67.160	•	
	7 8	12.3726	34.12961 39.81805	334.345 322.289	334.345 322.289	626.206 793.622 765.199	896.499 861.360	0.86C4C C.82201	14.2484	518.70 518.70	67.160 67.160	*	
	9	13.5000	45.50652	311.508	311.508	739.603	830.301 ec2.527	C. 78861 C. 75913	14.2958 14.3152	518.70 518.70	67-160 67-160	•	
	STREAML INE	STATIC	STATIC	STREAMLINE SLOPE	STREAML INE	BLACE	RELATIVE	RELATIVE MACH	RELATIVE TCTAL	RELATIVE TOTAL	RELATIVE FLOW	•	
	NUMBER	PRESSURE (PSI)	TEMPERATURE (DEG R)	ANGLE (DEG)	CURVATURE (PER IN)	VELOCITY (FPS)	VELOCITY (FPS)	NUMBER	PRESSURE (PSI)	TEPPERATURE (CEG A)	ANGLE (DEG)	*	
	1 2	5. 5490 6. 5055	398.02 415.95	0 • 0 •	0.	334.072 368.338	905.713 784.876	C. 92612 C. 78508	9.6572	466.28 467.21	58.929 56.664	4 .	
	3	7.25 C4 7.8548	428.58 438.12	0. 0.	0. 0.	398.991 427.253	69C.557 613.133	0.68C4E C.59757	9.8851 9.9596	468.26 469.41	54.200 51.467	•	
	5 6 7	8.3590 8.7883 9.1596	445.67 451.82 456.96	0. 0.	0.	453.785 478.594	547.727 491.578	C.52929 C.47178	10.1161	470.63 471.93	48.401 44.936	•	
	8 9	9.4847 9.7723	461.33 465.11	0. 0. 0.	0. 0.	5G3.147 526.434 548.993	443.(33 401.(97 365.198	0.42275 C.38096 G.34545	10.3578 10.4836 10.6132	473.29 474.72 476.21	41.003	4	• •
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	107622	•		3400.03			10.0172	410.21	31.462		
					••	: Stage exit i	. ••			W-4			1
-			*,										
	STREAMLINE NUMBER	RADIAL PCSITION (IN)	MASS-FLCW FUNCTION (LBM/SEC)	#ERIDIONAL VELOCITY (FPS)	AXIAL VELCCITY (FPS)	WHIRL VELOCITY (FPS)	ABSOLUTE VELOCITY (FPS)	ABSOLLTE MACH NUMBER	ABSOLUTE TCTAL PRESSURE (PSI)	ABSOLUTE TOTAL TEMPERATURE (DEG R)	ABSOLUTE FLOW ANGLE (DEG)	•	
	1 2	8. 2150 9. 0778	0. 5.68878	44 8 . 788 472 . 361	448.788 472.361	-284.519 -263.6CZ	531.377 540.935	C.53C41 O.54145	7.0432 7.1705	441.18 439.73	-32.374 -29.164	•	
	3	9.8306 10.5162	11.37755 17.06630	481.525 482.780	481.525 482.780	-251.529 -244.246	543-261 541-048	C.54486 0.54346	7.2385 7.2734	438 . 28 436 . 83	-27.581 -26.836	Ă	
	5	11.1562	22.75504 28.44378	479.380 472.427	479.380 472.427	-239.879 -237.404	536.C47 528.723	C.539C9 O.53224	7.2867 7.2828	435.39 433.94	-26.583 -26.680	4	
:	7 8 9	12.3503 12.9262 13.5000	34.13253 39.82128	459.733 442.268	459.733 442.268 420.691	-236.162 -235.692	516.843 5C1.150	0.52055 0.50482	7.2515	432.49 431.04	-27.169 -28.054	•	
	•	136 3000	45.51004	420.691	420.041	-235.675	482.207	C.48567	7.1330	429.59	-29.258		
	STREAMLINE NUMBER	STATIC PRESSURE (PSI)	STATIC TEMPERATURE (DEG R)	STREAML INE SLOPE ANGLE (DEG)	STREAMLINE CURVATURE (PER IN)	BLACE VELOCITY (FPS)	RELATIVE VELCCITY (FPS)	RELATIVE PACH NUMBER	RELATIVE TOTAL PRESSURE (PSI)	RELATIVE TOTAL TEMPERATURE (DEG R)	RELATIVE FLOW Angle (Deg)	•	ţ
	1 2	5.8152 5.8742	417.68 415.38	0. 0.	C.	334.072 369.159	764.242 789.627	C.76285 C.79C37	8.5489 8.8692	466.28 467.26	-54.039 -53.258		
	3	5.9154	413.72	ŏ.	0.	399.774	809.976	0.81236	9.1289	468.31	-53.524	•	
,	4 5	5, 94 99	412.47	0.	c.	A27.653	827-260	C. 831 C5 C. 84790	9.3577	469.43	-54.302	•	٠.
	6 7	5 • 97 94 6 • 00 5 3 6 • 02 85	411.47 410.68 410.26	0. 0.	G. G. Q.	453.678 478.388 502.241	843.105 857.640 869.824	C.84790 C.86335 C.87606	9.5688 9.7666 9.9370	470.62 471.88 473.33	-55.348 -56.575	•	
	á	6.0498 6.07C3	410.14 410.24	0. 0. 0.	0. 0.	525.659 548.993	88C-487 89C-328	C.88693 C.89673	10.0665	473.22 474.65 476.21	-50.093 -59.848 -61.803		
	•			~ .	••					7,0181		•	

** STAGE 1 PERFORMANCE **

STREAML IN E	STATER REACTION	RCTCR REACTION	STATCR PRESSURE LOSS COEFFICIENT	ROTOR PRESSURF LOSS COEFFICIENT	STATCR BLACE ROW EFFICIENCY	ROTCR BLADE RCW EFFICIENCY	RCTCR ISENTRCPIC EFFICIENCY	STACE ISENTROPIC EFFICIENCY
1	0.20214	1.18511	0.07952	C-40543	C.95792	0.77273	0.83699	0.78867
2	0.21907	0.59358	0.07996	0.30253	C.95380	C-82007	0.86760	0.82142
3	0.23392	0.85256	0.08642	0.23654	0.95063	C. 85384	C-89039	0.84654
4	0.24738	C.74107	C.C8091	C.189CO	C-94EC3	C. 87998	0.90868	C.867C9
5	0.25984	0.64965	0.08143	C-15233	C-54583	C.90126	0.92396	0.88451
6	0.27154	0.57318	0.08198	0.12365	C.94390	C-91863	0.93670	C-89926
7	0.28261	. 0.50934	0.08256	0.10616	0.94217	C. 92 962	0.94493	0.90959
8	0.29319	C.45554	0.08318	C.C9653	0.54658	C. 9359C	0.94969	C-91644
9	0.30333	C.41018	0.08382	C. C92 C9	C.93911	0.93899	0.95205	C-92C80

* MASS-AVERAGED QUANTITIES *

STATCR BLACE-ROW EFFICIENCY =

ROTOR BLACE-ROW EFFICIENCY .

15.996 BTL PER LBF 0.87477 0.70772 0.37815

STAGE TOTAL EFFICIENCY STAGE STATIC EFFICIENCY STAGE BLADE- TO JET-SPEED RATIO -

*** SPCCL PERFORMANCE SUMMARY (PASS-AVERAGED QUANTITIES) ***

19.996 BTL PER LBP 1287.50 HP 2.03436 2.4624C C.67477 C.70772 0.37815

SPCCL WORK SPCCL POWER =
SPCCL POWER =
SPCCL TCTAL- TO TCTAL-PRESSURE RATIO =
SPCCL TCTAL- TO STATIC-PRESSURE RATIO =
SPCCL STATIC EFFICIENCY SPCCL STATIC EFFICIENCY SPCCL BLADE- TO JET-SPEEC RATIO =